Автор работы: Пользователь скрыл имя, 12 Октября 2011 в 20:41, реферат
Металл применяли давно с ХII века в уникальных по тому времени сооружениях (дворцах, церквах, и т. д.) в виде затяжек и скреп для каменной кладки. Затяжки выковывали из кричного железа и скрепляли через проушины на штырях. Первой такой конструкцией являются затяжки Успенского собора во Владимире (1158 г.). Покровский собор в Москве – первая конструкция, состоящая из стержней, работающих на растяжение, изгиб и сжатие.
Металлические конструкции имеют недостатки:
и т.д.).
При проектировании
1. Условия эксплуатации.
2. Экономия металла (высокая стоимость).
Основным принципом проектирования является достижение трех главных показателей: экономии стали, повышение производительности труда при изготовлении, снижение трудоемкости и сроков монтажа, которые определяют стоимость конструкции.
Достигается это путем
алюминиевых
сплавов
Для строительных
Наиболее важными для работы являются механические свойства: прочность, упругость, пластичность, склонность к упругому разрушению, ползучесть, твердость, а также свариваемость, коррозионная стойкость, склонность к старению и технологичность.
Прочность - характеризует сопротивляемость материала внешним силовым воздействиям без разрушения.
Упругость – свойство материала восстанавливать свою первоначальную форму после снятия внешних нагрузок.
Пластичность – свойство материала сохранять деформативное состояние после снятия нагрузки, т.е. получать остаточные деформации без разрушения.
Хрупкость – склонность разрушаться при малых деформациях.
Ползучесть – свойство материала непрерывно деформироваться во времени без увеличения нагрузки.
Твердость – свойство поверхностного слоя металла сопротивляться упругой и пластической деформациям или разрушению при внедрении в него индентора из более твердого материала.
Прочность металла при статическом нагружении, а также его упругие и пластические свойства определяются испытанием стандартных образцов на растяжение с записью диаграммы зависимости между напряжением Ơ и относительным удлинением ε.
Диаграммы растяжения
1.3.
Классификация сталей
По прочностным свойствам стали условно делятся на три группы: обычной (Ơ у = 29 кН/см), повышенной (Ơ у = 29-40 кН/см) и высокой прочности (Ơ у > >40 кН/см).
Повышение прочности стали, достигается легированием и термической обработкой.
По химическому составу стали, подразделяются на углеродистые и легированные.
Углеродистые стали состоят из железа и углерода с добавкой кремния (или алюминия) и марганца.
Рис.1.1. К определению механических характеристик металла:
а – образец для испытания на растяжение; б – к определению
Углерод (У) повышая прочность стали, снижает ее пластичность и ухудшает свариваемость, поэтому применяются только низкоуглеродистые стали (У < 0,22%).
Легированные стали помимо железа и углерода имеют специальные добавки, улучшающие качество стали. Однако, добавки ухудшают свариваемость стали и удорожают ее, поэтому в строительстве используют низколегированные стали с содержанием добавки не более 5%.
Основными легирующими
Кремний раскисляет сталь, т.е. связывает избыточный кислород и повышает ее прочность, снижает пластичность, ухудшает свариваемость и коррозионную стойкость.
Марганец повышает прочность, снижает вредное влияние серы. При содержании марганца > 1,5% сталь становится хрупкой.
Медь повышает прочность, увеличивает стойкость против коррозии. Содержание меди > 0,7% способствует старению и хрупкости стали.
Хром и никель повышают прочность стали, без снижения пластичности
и улучшают ее коррозионную стойкость.
Алюминий раскисляет сталь, нейтрализует вредное влияние фосфора, повышает ударную вязкость.
Ванадий и молибден увеличивают прочность почти без снижения пластичности, предотвращают разупрочнение термообработанной стали при сварке.
Азот в несвязном состоянии способствует старению стали, делает ее хрупкой, поэтому его должно быть не более 0,009%.
Фосфор
относится к вредным примесям так как,
повышает хрупкость стали.
термообработанные (закалка в воде и высокотемпературный отпуск).
По степени раскисления стали могут быть кипящими, полуспокойными и спокойными.
Спокойные стали используют при изготовлении
ответственных конструкций, подвергающихся
динамическим воздействиям. Полуспокойная
сталь – промежуточная между кипящей
и спокойной.
1.4. Выбор сталей
для строительных конструкций.
Выбор стали ведется на основе
вариантного проектирования и
технико-экономического
температуры среды;
характера нагружения;
вида напряженного состояния;
способа соединения элементов;
толщины проката.
В зависимости от условий
К первой группе относятся сварные
конструкции, работающие в особо тяжелых
условиях, поэтому возможно хрупкое и
усталостное разрушение, К свойствам сталей
для этих конструкций предъявляются наиболее
высокие требования.
Ко второй группе относятся сварные конструкции, работающие на статическую нагрузку при воздействии одноосного и однозначного двухосного поля растягивающих напряжений (например, фермы, ригели рам, балки перекрытий и покрытий и т. д.), а также конструкции первой группы при отсутствии сварных соединений.
Общим для конструкций этой
группы является повышенная
К третьей группе относятся сварные конструкции, работающие при преимущественном воздействии сжимающих напряжений (например, колонны, стойки, опоры под оборудование и др.), а также конструкции второй группы при отсутствии сварных соединений.
В четвертую группу включены вспомогательные конструкции и элементы (связи, элементы фахверка, лестницы, ограждения и т. п.), а также конструкции третьей группы при отсутствии сварных соединений.
Если для конструкций третьей и четвертой групп достаточно ограничиться требованиями к прочности при статических нагрузках, то для конструкций первой и второй групп важна оценка сопротивления стали динамическим воздействиям и хрупкому разрушению.
В материалах для сварных
В пределах каждой группы
В нормах содержится перечень
сталей в зависимости от
1.5.
Влияние различных
факторов на свойства
стали
Старение. При температурах ниже температуры образования феррита растворимость углерода ничтожна, но все же в небольшом количестве он остается. При благоприятных обстоятельствах углерод выделяется, располагается между зернами феррита и группируется у различных дефектов кристаллической решетки.
Старению способствуют – механические воздействия, особенно пластические деформации (механическое старение), температурные колебания, приводящие к изменению растворимости и скорости диффузии компонентов (температурное старение). При температуре 150-200ºС старение резко возрастает.
Наклеп. Повторные загружения в пределах упругих деформаций (до предела упругости) не изменяют вида диаграммы работы стали, нагружение и разгрузка будут происходить по одной линии (рис.1.2.а).
Рис.1.2. Диаграммы деформирования стали при повторном нагружении:
а – в пределах упругих деформаций; б – с перерывом (после «отдыха»);
в
– без перерыва
Если образец загрузить до пластического состояния и затем снять нагрузку, то появятся остаточные деформации εост. При повторном нагружении образца после некоторого «отдыха» материал работает упруго до уровня предыдущего загружения. Повышение упругой работы материала в результате предшествующей пластической деформации называется наклепом. При наклепе искажается атомная решетка и увеличивается плотность дислокаций. Пластичность стали снижается, повышается опасность хрупкого разрушения, что неблагоприятно сказывается на работе строительных конструкций.