Экономика и управление на предприятии "Железнодорожный транспорт"

Автор работы: Пользователь скрыл имя, 11 Ноября 2010 в 13:43, курс лекций

Описание

В настоящее время в условиях рынка для конкуренции с другими видами транспорта необходимо увеличение рентабельности перевозок при жесткой экономии топливоэнергетических ресурсов и высокой производительности.

Ежегодно на тягу поездов расходуется около 18 % дизельного топлива и 4,5 % электроэнергии от общего их производства, причем, их основная доля приходится на грузовое движение.

Масса и скорость поездов определяют производительность локомотивов. Эти показатели тесно связаны с пропускной и провозной способностями железных дорог, участковой скоростью, среднесуточным пробегом и оборотом подвижного состава, а также потребным парком локомотивов и вагонов для освоения объема перевозок.

Содержание

1.Введение.
2.Виды тяги и их технико-экономическое сравнение.
3.Общие понятия о подвижном составе.
◦Вагоны.
4.Принцип работы пневматических тормозов.
5.Принципы работы локомотивов:
6.1. Паровоза.
6.2. Тепловозa.

6.2.1. Принцип работы четырехтактного дизеля.

6.2.2. Принцип работы двухтактного дизеля.

6.2.3. Системы дизеля.

6.2.4. Способы передачи мощности от вала дизеля к колесным парам.

6.2.5. Электрические передачи на тепловозах.

6.3.Газотурбовоза.

6.4. Электровозa.

6.Осевые формулы локомотивов.
7.Принципиальная схема электроснабжения.
9. Внешнее электроснабжение.

10. Общие сведения о тяговом электроснабжении:

10.1. Схема тягового электроснабжения.

10.2. Система постоянного тока.

10.3. Система переменного (однофазно-постоянного) тока.

11. Общие сведения о конструкции контактной сети:

11.1. Виды контактных подвесок.

11.2. Анкеровка и секционирование контактной сети.

11.3. Опоры контактной сети.

11.4. Провода контактной сети

11.5. Изоляторы.

11.6. Рельсовые цепи.

12.Общее устройство электродвигателя постоянного тока и принцип его работы.

13.Сущность электрического торможения.

14.Образование силы тяги.

15.Образование силы торможения.

16.Сопротивления движению поезда.

17.Определение массы состава.

18.Тяговая характеристика локомотива.

19.Режимы движения поезда.

20.К.П.Д. локомотивной тяги.

21.Локомотивное хозяйство.

22.Локомотивный парк и его учет.

23.Способы обслуживания поездов локомотивами.

24.Способы обслуживания локомотивов локомотивными бригадами.

25.Показатели использования локомотивов.

26.Планово-предупредительная система технического обслуживания и ремонта локомотивов – выписка из приказа начальника Горьковской железной дороги №211/Н от 24.02.05 г. «Об улучшении технического состояния тягового подвижного состава».

27.Цикличность ремонта электровоза ВЛ60к.

Работа состоит из  1 файл

Краткий курс лекций-Э.doc

— 4.06 Мб (Скачать документ)
justify">      Преимущества электрического торможения: экономия тормозных колодок, простота управления на спусках, а при рекуперативном торможении и экономия электроэнергии.

      На некоторых тепловозах применяется реостатное торможение. 
 

                                       

14. Образование силы тяги.

       При подаче U на обмотки тягового двигателя, по обмоткам тягового двигателя течет ток, образуется вращающий момент, якорь тягового двигателя вращается и через зубчатую передачу вращающий момент передается на колесную пару Мк. Колесо колесной пары прижато к рельсу с силой Р0. Вращающий момент Мк можно заменить парой сил F1 и F2. Сила F1 приложена к центру колеса О, а сила F2 – к ободу колеса в точке А касания его с рельсом. Рельс закреплен! Под действием сил F2 и Р0 возникнут равные им и противоположно направленные реакции со стороны рельса, выраженные силами Fк и R, которые являются внешними силами. Сила R направлена вертикально и не влияет характер движения. Сила реакции рельса Fк и является силой тяги. За счет сцепления колеса с рельсом возникает необходимый упор. При этом силы F2 и Fк уравновешиваются. Под действием силы F1 колесо поворачивается относительно точки А, как мгновенного центра вращения. Так как мгновенный центра вращения при этом перемещается по поверхности головки рельса слева направо, то и центр колеса (точка О) поступательно движется в том же направлении.

      Сумма сил Fк всех движущих колесных пар локомотива называется силой тяги локомотива.

      Сила  тяги Fк не должна превышать силу сцепления колеса с рельсом. FкFк сцеп . В противном случае колесо теряет упор и начнется проскальзывание  - боксование. Сила сцепления определяется произведением силы Р0 на коэффициент сцепления колеса с рельсом – Fсцеп = P0 x ψ.

      Для локомотива Fсцеп = mл x g x ψ, где mл - масса локомотива, g – 9,81 м/с2 – ускорение свободного падения, ψ – коэффициент сцепления.

      Коэффициент сцепления  зависит от материала рельса и колес, состояния их поверхностей, от скорости движения.

      Природу силы сцепления часто объясняют  наличием шероховатостей на поверхностях колеса и рельса. При таком рассуждении можно считать, что при наличии отшлифованных поверхностей сила сцепления меньше. Однако, практика доказывает, что при чистых и хорошо обработанных поверхностях сила сцепления выше. Сцепление колес с рельсами объясняется молекулярным сцеплениемДля увеличения сцепления колес с рельсами используют сухой кварцевый песок, который разрушает поверхностные пленки и твердые частицы внедряются в контактируемые поверхности.

      Расчетный коэффициент сцепления локомотива ψк  определяют по эмпирическим формулам для различных типов локомотивов и отдельно в кривых малого радиуса R менее 500 м; например для электровозов переменного тока

      

      Под каждое колесо электровоза нужно  подавать песка 400-700 г/мин летом и 900-1500 г/мин зимой.

      Склонность  колесных пар к боксованию возрастает с увеличением проката бандажей свыше 3÷4 мм и износа рельсов вследствие изменения формы и размеров площадки, по которой соприкасаются колесо и рельс.

      Вращающий момент, действующий на колесо Мк = М х μ x ηn, где М – вращающий момент на валу якоря тягового двигателя, μ - передаточное отношение зубчатой передачи, η– к.п.д. зубчатой передачи и моторно-осевых подшипников, который принимается равным 0,975.

      Сила  F1 действующая на буксу, и по III закону Ньютона букса на колесе действует с силой F3. Пара сил F3 и Fк определяют момент. Для условия равновесия колеса Fк х Dк / 2 = Мк, отсюда Fк = 2 Мк / Dк, или

          Как видно из формулы силу тяги локомотива можно изменить конструктивно изменением передаточного отношения зубчатой передачи или изменением диаметра колеса Dк.

          При увеличении передаточного отношения зубчатой передачи сила тяги увеличивается, а при увеличении диаметра колеса Dк – уменьшается; при этом скорость движения будет изменяться наоборот. Поэтому, для пассажирских локомотивов не так важна сила тяги, как скорость, то =1,5 3,0, а для грузовых локомотивов не так важна скорость, как сила тяги, то =3,5 5,0.

        Передаточное отношение  - это отношение числа зубьев зубчатого колеса, расположенного на колесной паре, к числу зубьев шестерни, расположенной на валу якоря электродвигателя и показывает, во сколько раз медленнее вращается колесная пара по отношению к вращению якоря тягового электродвигателя.

      15. Образование силы торможения.

    При механическом торможении подается сжатый воздух в тормозные цилиндры. Поршень в цилиндре перемещается, через шток, тяги  и рычаги прижимая тормозную колодку к колесу с усилением К. В месте контакта колеса с тормозной колодкой возникает сила трения K x , направленная навстречу вращению колеса. - это коэффициент трения колодки о колесо. Перенесем силу  силу трения K x в точку А касания колеса с рельсом. Колесо прижато к рельсу силой Р0. Обе эти силы внутренние по отношению к поезду и не могут повлиять на характер движения.

      Если колесо прижато к рельсу с силой Р0, то в результате сцепления колеса с рельсом сила K x  стремится сдвинуть рельс по направлению движения. Но рельс закреплен и вызывается реакция рельса по III закону Ньютона Вт, равная  K x и противоположно направленная. Эта сила по отношению к поезду является внешней и называется тормозной силой. Она действует против движения и создает колесу упор.

      Тормозная сила одного колеса: Bт = K x

             

                Усилие прижатия тормозной колодки к колесу «К» зависит от интенсивности торможения, от диаметра тормозного цилиндра, от давления воздуха в нем, от передаточного отношения рычажной передачи, от силы оттормаживающей пружины в тормозном цилиндре.

               Коэффициент трения  зависит от материала колодок, скорости движения и удельных сил нажатия колодок на колеса.

       С увеличением скорости движения и удельного нажатия колодок коэффициент трения снижается, т.к. за счет тепла металл размягчается, в тонком слое может оплавиться. Для повышения коэффициента трения применяют двухстороннее нажатие колодок.

      Коэффициент трения рассчитывают по эмпирическим формулам.

        Применяются тормозные колодки: чугунные, чугунные с повышенным содержанием фосфора (до 1,0÷1,4%), и композиционные.

      С увеличением скорости движения у  чугунных колодок коэффициент трения более резко снижается, и чугунные колодки имеют больший износ. У композиционных колодок коэффициент трения выше и с увеличением скорости движения он в меньшей степени снижается. У чугунных колодок с повышенным содержанием фосфора коэффициент трения имеет промежуточное значение, но ближе к значениям чугунных колодок.

           Тормозная сила Вт не должна превышать силу сцепления колеса с рельсом. Вт Fк сцеп .В противном случае колесо прекращает вращение и будет

двигаться «юзом» по рельсу. На поверхности катания колеса образуется площадка (ползун), который во время дальнейшего движения будет разрушать рельсы.

  16. Сопротивления движению поезда.

      Силы, действующие вдоль оси пути по направлению движения поезда, называются движущими силами, а силы встречного направления – силами сопротивления движения поезда.

           Сопротивления  движению поезда делятся на две составляющие:

           I. Основное, действует при движении поезда всегда:

        1. Сопротивление пути – трение качения колес по рельсам из-за деформации опорных поверхностей (сила обратно пропорциональна диаметру колес и зависит от твердости материалов); трение скольжения из-за проскальзывания и из-за трения между гребнями бандажей и рельсами, которые уменьшаются при натяжке в режиме тяги; от ударов при движении по неровностям пути (зависит от скорости, нагрузки на ось, зазора в стыке).

        2. Сопротивление подвижного состава – трение в подшипниках (сила прямо пропорциональна диаметру оси, обратно пропорциональна диаметру колеса, зависит от коэффициента трения, площади соприкосновения, смазки).

        3. Сопротивление внешней среды – впереди сжатие воздуха, боковые поверхности и крыша соприкасаются с воздухом, в промежутках между вагонами и за составом происходит разряжение, завихрение воздуха (конструктивно выполнять более обтекаемую форму подвижного состава).

             II. Дополнительное – возникает при движении по отдельным участкам пути и в отдельные периоды времени.

         1. От уклонов – эти силы создаются составляющей веса поезда, действующие на подъеме против движения поезда, а на спусках – по направлению движения.

      Уклон характеризуется крутизной i, в – тысячных долях и показывает высоту подъема в метрах на каждый километр пути.

      Удельная  сила дополнительного сопротивления  от подъема численно равна подъему.

          2. От кривых – под действием центробежной силы гребни бандажей колесных пар прижимаются к рельсам, и появляется трение, колесо, идущее по внутреннему рельсу, имеет проскальзывание; трение в опорах кузова, в боковых опорах. Из-за большого числа факторов и сложных зависимостей удельное дополнительное сопротивление от кривой определяется по эмпирической формуле ωR = 700 / R, где R – радиус кривой в м.

         3. При трогании с места – повышенное трение в подшипниках (смазка выдавлена, полусухое трение), большая деформация рельса и колеса.

         Силы удельного дополнительного сопротивления при трогании с места определяются по эмпирическим формулам:

   для подшипников скольжения и ;

   для подшипников качения, где .

       mBo – масса вагона, приходящаяся на одну ось.

          4. При низких температурах окружающего воздуха – возрастает вязкость смазки, а значит и коэффициент трения; возрастает так же и сопротивление воздушной среды; определяется по формуле ωНТ = ω0 (КНТ -1), а значение коэффициента низких температур КНТ берется из таблицы при различных низких температурах и скоростях движения для грузовых и пассажирских вагонов.

          5. От ветра  - встречный и боковой ветер увеличивают сопротивление из-за трения и увеличения сопротивления воздушного потока. По таблице берется коэффициент ветра КВ и дополнительное сопротивление от ветра ωВ = ω0 (КВ -1).

          6. От подвагонных генераторов для пассажирских вагонов.

          7. От движения в тоннелях.

      Общее сопротивление движению поезда WК определяется алгебраической     суммой    основного   и дополнительного сопротивлений WК = W0 + Wд, в Н. Почти все виды сопротивлений пропорциональны весу поезда, поэтому рассматривают удельное   сопротивление движению   поезда ωН = ω0 + ωд, в Н/кН.

Информация о работе Экономика и управление на предприятии "Железнодорожный транспорт"