Автор работы: Пользователь скрыл имя, 02 Ноября 2011 в 12:00, дипломная работа
Цель образовательной подготовки в начальной школе – формирование личности. Каждый предмет развивает как общие, так и специальные качества личности. Математика развивает интеллект. Так как в деятельности учителя главное – развитие мышления, то тема нашей дипломной работы является актуальной и важной.
Введение
Глава I. Развитие наглядно-действенного и наглядно-образного мышления на интегрированных уроках математики и трудового обучения.
П. 1.1. Характеристика мышления как психического процесса.
П. 1.2. Особенности развития наглядно-действенного и наглядно-образного мышления детей младшего школьного возраста.
П. 1.3. Изучение опыта учителей и методов работы по развитию наглядно-действенного и наглядно-образного мышления младших школьников.
Глава II. Методико-математические основы формирования наглядно-действенного и наглядно-образного мышления младших школьников.
П. 2.1. Геометрические фигуры на плоскости.
П. 2.2. Развитие наглядно-действенного и наглядно-образного мышления при изучении геометрического материала.
Глава III. Опытно-экспериментальная работа по развитию наглядно-действенного и наглядно-образного мышления младших школьников на интегрированных уроках математики и трудового обучения.
П. 3.1. Диагностика уровня развития наглядно-действенного и наглядно-образного мышления младших школьников в процессе проведения интегрированных уроков математики и трудового обучения во 2 классе (1-4)
П. 3.2. Особенности использования интегрированных уроков по математике и трудовому обучению при развитии наглядно-действенного и наглядно-образного мышления младших школьников.
П. 3.3. Обработка и анализ материалов эксперимента.
Заключение
Список использованной литературы
Уже в начальной школе дети начинают знакомиться с элементарными геометрическими понятиями, геометрический материал занимает значительное место в традиционных и альтернативных программах. Это связано со следующими причинами:
1. Он позволяет активно использовать наглядно-действенный и наглядно-образный уровень мышления, которые являются наиболее близкими детям младшего школьного возраста, и опираясь на которые, дети выходят на словесно-образный и словесно-логический уровни.
Геометрия, как и любой другой учебный предмет, не может обходиться без наглядности. Известный русский методист-математик Беллюстин В. К. еще в начале XX века отмечал, что "никакое отвлеченное сознание невозможно, если ему не предшествует обогащение сознания нужными представлениями". Формирование отвлеченного мышления у школьников с первых школьных шагов требует предварительного пополнения их сознания конкретными представлениями. При этом удачное и умелое применение наглядности побуждает детей к познавательной самостоятельности и повышает их интерес к предмету, является важнейшим условием успеха. В тесной связи с наглядностью обучения находится и его практичность. Именно из жизни черпается конкретный материал для формирования наглядных геометрических представлений. В этом случае обучение становится наглядным, согласованным с жизнью ребенка, отличается практичностью (Н/Ш:2000, №4, с. 104).
2.
Увеличение объема
Изучение элементов геометрии в начальных классах решает следующие задачи:
"В
современных исследованиях
1-й уровень – знание-знакомство;
2-й уровень – логический уровень знания;
3-й уровень – творческий уровень знания.
Геометрический материал в младших классах изучается на первом уровне, т. е. на уровне знания-знакомства (например, названия предметов: шар, куб, прямая линия, угол). На этом уровне никакие правила и определения не заучиваются. если отличает зрительно или на ощупь куб от шара, овал от круга – это тоже знание, которое обогащает мир представлений и слов. (Н/Ш: 1996, №3, с.44).
В настоящее время учителя составляют сами, подбирают из изданной в достаточном количестве разнообразной литературы математические задачи, направленные на развитие мышления, в том числе и таких видов мышления, как наглядно-действенное и наглядно – образное, включают их во внеклассную работу.
Это, например, конструирование из палочек геометрических фигур, распознавание фигур, полученных перегибанием листа бумаги, разбиение целых фигур на части и составление целых фигур из частей.
Приведу примеры математических заданий на развитие наглядно-действенного и наглядно-образного мышления.
Прямиугольник.
Треугольник.
Точка.
Луч.
Отрезок.
Квадрат.
Круг.
Окружность.
Кривая
линия.
Угол.
Прямоугольник.
Круг.
Квадрат.
Треугольник.
Курс математики – изначально интегрированный. Это способствовало созданию интегрированного курса "Математика и конструирование.
Так
как одна из задач уроков трудового
обучения – развитие у детей младшего
школьного возраста всех видов мышления,
в том числе наглядно-
самый распространенный на уроках труда вид работы – аппликации из геометрических фигур. При изготовлении аппликации у детей совершенствуются навыки разметки, решаются задачи сенсорного развития учащихся, развивается мышление, так как, расчленяя сложные фигуры на простые и, наоборот, составляя из простых фигур более сложные, школьники закрепляют и углубляют свои знания о геометрических фигурах, учатся различать их по форме, величине, цвету, пространственному расположению. Такие занятия открывают возможность для развития творческого конструкторского мышления.
Специфика целей и содержания интегрированного курса "Математика и конструирование" определяет своеобразие методов его изучения, форм и приемов проведения занятий, где на первый план выходит самостоятельная конструкторско-практическая деятельность детей, реализуемая в форме практических работ и заданий, расположенных в порядке нарастания уровня трудности и постепенного обогащения их новыми элементами и новыми видами деятельности. Поэтапное формирование навыков самостоятельного выполнения практических работ включает в себя как выполнение заданий по образцу, так и задания творческого характера.
Следует заметить, что в зависимости от вида урока (урок изучения нового математического материала или урок закрепления и повторения) центр тяжести при его организации в первом случае сосредоточен на изучении математического материала, а во втором – на конструкторско-практической деятельности детей, в ходе которой идет активное использование и закрепление приобретенных ранее математических знаний и умений в новых условиях.
В связи с тем, что изучение геометрического материала по этой программе идет главным образом методом практических действий м объектами и фигурами, большое внимание следует обратить на:
В
настоящее время существует много
параллельных и альтернативных программ
по курсу математики в начальных
классах. Рассмотрим и сравним их.
Глава III. Опытно-экспериментальная работа по развитию
наглядно-действенного и наглядно-образного мышления
младших школьников на интегрированных уроках
математики
и трудового обучения.
3.1.
Диагностика уровня
развития наглядно-действенного
и наглядно-образного
мышления младших школьников
в процессе проведения
интегрированных уроков
математики и трудового
обучения в 2 классе (1-4).
Диагностика, как
специфический вид
Овладение технологией педагогической диагностики позволяет учителю грамотно реализовать принцип возрастного и индивидуального подхода к детям. Этот принцип был выдвинут еще в 40-е годы психологом Рубинштейном С. Л. Ученый считал, что "изучать детей, воспитывая и обучая их, с тем, чтобы воспитывать и обучать, изучая их, - таков путь единственно-полноценной педагогической работы и наиболее плодотворный путь познания психологии детей". (Давлетишина А. А. Изучение индивидуальных особенностей младшего школьника //Начальная школа.-1993,-№5)
Работа над дипломным проектом поставила передо мной один, но очень важный вопрос: "Как развивается наглядно-действенное и наглядно-образное мышление на интегрированных уроках математики и трудового обучения?"
До
внедрения системы
Методика 1. "Кубик Рубика"
Эта методика предназначена для диагностики уровня развития наглядно-действенного мышления.
Пользуясь известным кубиком Рубика, ребенку задают разные по степени сложности практические задачи на работу с ним и предлагают их решить в условиях дефицита времени.
В методику входят девять заданий, вслед за которыми в скобках указано количество баллов, которое получает ребенок, решив данную задачу за 1 минуту. всего на эксперимент отводится 9 минут. Переходя от решения одной задачи к другой, каждый раз необходимо изменять цвета собираемых граней кубика Рубика.
Задание 1. На любой грани кубика собрать столбец или строку из трех квадратов одного цвета. (0,3 балла).
Задание 2. На любой грани кубика собрать два столбца или две строки из квадратов одного и того же цвета. (0,5 балла)
Задание 3. Собрать полностью одну грань кубика из квадратов одного и того же цвета, т. е. полный одноцветный квадрат, включающий в себя9 малых квадратиков. (0,7 балла)
Задание 4. Собрать полностью одну грань определенного цвета и к ней еще одну строку или один столбец из трех малых квадратиков на другой грани кубика. (0,9 балла)
Задание 5. собрать полностью одну грань кубика и в дополнение к ней еще два столбца или две строки того же самого цвета на какой-либо другой грани кубика. (1,1 балла)
Задание 6. Собрать полностью две грани кубика одного и того же цвета. (1,3 балла)
Задание 7. Собрать полностью две грани кубика одного и того же цвета и, кроме того, один столбец или одну строку того же самого цвета на третьей грани кубика. (1,5 балла)
Задание 8. . Собрать полностью две грани кубика и к ним еще две строки или два столбца такого же цвета натретьей грани кубика. (1,7 балла)