Развитие наглядно-действенного и наглядно-образного мышления на интегрированных уроках математики и трудового обучения

Автор работы: Пользователь скрыл имя, 02 Ноября 2011 в 12:00, дипломная работа

Описание

Цель образовательной подготовки в начальной школе – формирование личности. Каждый предмет развивает как общие, так и специальные качества личности. Математика развивает интеллект. Так как в деятельности учителя главное – развитие мышления, то тема нашей дипломной работы является актуальной и важной.

Содержание

Введение
Глава I. Развитие наглядно-действенного и наглядно-образного мышления на интегрированных уроках математики и трудового обучения.
П. 1.1. Характеристика мышления как психического процесса.
П. 1.2. Особенности развития наглядно-действенного и наглядно-образного мышления детей младшего школьного возраста.
П. 1.3. Изучение опыта учителей и методов работы по развитию наглядно-действенного и наглядно-образного мышления младших школьников.
Глава II. Методико-математические основы формирования наглядно-действенного и наглядно-образного мышления младших школьников.
П. 2.1. Геометрические фигуры на плоскости.
П. 2.2. Развитие наглядно-действенного и наглядно-образного мышления при изучении геометрического материала.
Глава III. Опытно-экспериментальная работа по развитию наглядно-действенного и наглядно-образного мышления младших школьников на интегрированных уроках математики и трудового обучения.
П. 3.1. Диагностика уровня развития наглядно-действенного и наглядно-образного мышления младших школьников в процессе проведения интегрированных уроков математики и трудового обучения во 2 классе (1-4)
П. 3.2. Особенности использования интегрированных уроков по математике и трудовому обучению при развитии наглядно-действенного и наглядно-образного мышления младших школьников.
П. 3.3. Обработка и анализ материалов эксперимента.
Заключение
Список использованной литературы

Работа состоит из  1 файл

diplom.doc

— 282.00 Кб (Скачать документ)

     Задание на повторение понятия прямоугольника.

     - Найдите соответствующие пары, чтобы  при их сложении получалось  три прямоугольника. 
 
 
 
 

     На этом уроке использовалась игра "Танграм" – математический конструктор. она способствует развитию рассматриваемых нами видов мышления, творческой инициативы, смекалки (см. приложение №4).

     Для составления плоскостных фигур  по образу необходимо не только знание названия геометрических фигур, их свойств и отличительных признаков, но и умение представить, вообразить, что получится в результате соединения нескольких фигур, зрительно расчленить образец, представленный контуром или силуэтом, на составляющие его части.

     Обучение  детей игре "Танграм" проводилось  в четыре этапа.

     1 этап. Ознакомление детей с игрой: сообщение названия, рассматривание отдельных частей, уточнение их названия, соотношение частей по размерам, усвоение способов соединения их между собой.

     2 этап. Составление сюжетных фигур по элементарному изображению предмета.

     Составление предметных фигур по элементарному  изображению состоит в механическом подборе, копировании способа расположения частей игры. Необходимо внимательно рассмотреть образец, назвать составные части, их расположение и соединение.

     3 этап. Составление сюжетных фигур по частичному элементарному изображению.

     Детям предлагаются образцы, на которых указано  место расположения одной – двух составных частей, остальные они  должны расположить самостоятельно.

     4 этап. Составление сюжетных фигур по контурному, или силуэтному, образцу.

     На  этом уроке было знакомство с игрой "Танграм" 

Фрагмент 5.

     - Это древняя китайская игра. В  целом это квадрат, разделенный  на 7 частей. (показ схемы) 
 
 
 
 
 
 
 
 

     - Из этих частей вы должны сконструировать изображение свечи. (показ схемы) 
 
 
 
 
 
 
 
 

      Тема: Круг, окружность, их элементы; циркуль, его использование, построение окружности с помощью циркуля. "Волшебный круг", составление различных фигур из "волшебного круга".

     Этот урок послужил развитию умения анализировать, сравнивать, логического мышления, наглядно-действенного и наглядно-образного мышления, воображения.

     Примеры заданий на развитие наглядно-действенного и наглядно-образного мышления. 

Фрагмент 6.

     (после  разъяснения и показа учителя, как начертить окружность с помощью циркуля, дети выполняют такую же работу).

     - Ребята, у вас на столах лежит  картон. Начертите на картоне  окружность радиусом 4 см.

     Затем, на листах красного цвета учащиеся чертят окружность, вырезают круги, с помощью карандаша и линейки делят круги на 4 равные части. 
 
 
 
 

     Одну  часть отделяют от круга (заготовка  для шляпки гриба).

     Изготавливают ножку для гриба, склеивают все  части. 

Составление предметных картинок из геометрических фигур.

           - В "Стране круглых фигур" жители придумали свои игры, в которых используются круги, разделенные на различные фигуры. Одна из таких игр называется "Волшебный круг". С помощь. этой игры можно выложить различных человечков из геометрических фигур, составляющих круг. А человечки эти необходимы для того, чтобы собирать грибы, изготовленные вами сегодня на уроке. У вас на столах лежат круги, разделенные линиями на фигуры. Возьмите ножницы и разрежьте круг по намеченным линиям.

     Затем учащиеся выкладывают человечков. 

     3.3. Обработка и анализ материалов эксперимента. 

     После проведения интегрированных уроков по математике и трудовому обучению мы провели констатирующее исследование.

     Участвовала та же группа учащихся, использовались задания предварительного эксперимента с целью выявления, на сколько процентов повысился уровень развития мышления младшего школьника после проведения интегрированных уроков математики и трудового обучения. После проведения всего эксперимента вычерчивается диаграмма, из которой можно  увидеть, на сколько процентов повысился уровень развития наглядно-действенного и наглядно-образного мышления детей младшего школьного возраста. Делается соответствующий вывод. 

     Методика 1. "Кубик Рубика"

     После проведенния этой методики были получены следующие результаты: 

№ п\п Ф. И. учащегося Задание Общий результат (балл) Уровень развития наглядно-дей ст-венного мыш- ления
1 2 3 4 5 6 7 8 9
1 Кушнерев 

Александр

+ + + + + + + + - 8 высокий
2 Данилина Дарья + + + + + + + - - 6,3 высокий
3 Кирпичев 

Алексей

+ + + + + - - - - 3,5 средний
4 Мирошников  Валерий + + + + + + - - - 4,8 высокий
5 Еременко Марина + + + + + - - - - 3,5 средний
6 Сулейманов  Ренат + + + + + + + + + 10 очень высокий
7 Тихонов Денис + + + + + + + - - 6,3 высокий
8 Черкашин Сергей + + + - - - - - - 1,5 средний
9 Тенизбаев Никита + + + + + + + + + 10 очень высокий
10 Питимко Артем + + + - - - - - - 1,5 средний
 

     Из  таблицы видно, что 2 ребенка имеют  очень высокий уровень развития наглядно-действенного мышления, 4 ребенка  – высокий уровень развития, 4 ребенка – средний уровень развития. 

     Методика 2. "Матрица Равена"

     Результаты  этой методики такие (см. Приложение №1):

     2 человека имеют очень высокий  уровень развития наглядно-образного  мышления, 4 человека – высокий  уровень развития, 3 человека –  средний уровень развития и 1 человек – низкий уровень. 

     Методика 3. "Лабиринт"

     После проведения методики были получены следующие  результаты (см. Приложение 2):

     1 ребенок – очень высокий уровень  развития;

     5 детей – высокий уровень развития;

     3 ребенка – средний уровень  развития;

     1 ребенок – низкий уровень развития;

     Составляя результаты диагностической работы с результатами методик, мы получили, что 60% испытуемых имеют высокий  и очень высокий уровень развития, 30% - средний уровень и 10% - низкий уровень.

     Динамика  развития наглядно-действенного и наглядно-образного мышления учащихся представлена на диаграмме: 
 
 
 
 
 
 

     Итак, мы видим, что результаты стали намного  выше, уровень развития наглядно-действенного и наглядно-образного мышления младшего школьника значительно повысился, это говорит о том, что проведенные  нами интегрированные уроки математики и трудового обучения существенно улучшили процесс развития этих видов мышления второклассников, что явилось основанием доказательства правильности выдвинутой нами гипотезы. 
 
 
 
 
 
 
 
 
 

Заключение.

      Развитие  наглядно-действенного и наглядно-образного мышления при проведении интегрированных уроков математики и трудового обучения, как показало наше исследование, является очень важной и актуальной проблемой.

      Исследуя  эту проблему, мы подобрали методы диагностики наглядно-действенного и наглядно-образного мышления применительно к младшему школьному возрасту.

      Для улучшения геометрических знаний и  развития рассматриваемых видов мышления нами были разработаны и проведены интегрированные уроки математики и трудового обучения, на которых детям понадобились не только математические знания, но и трудовые умения и навыки.

      Интеграция  в начальной школе, как правило, имеет количественный характер – "немного обо всем". Это значит, что дети получают все новые и новые представления о понятиях, систематические дополняя и расширяя круг уже имеющихся знаний (двигаясь в познании по спирали). В начальной школе интеграцию целесообразно строить на объединении достаточно близких областей знаний.

      В наших уроках мы попытались объединить два разноплановых по способу овладения ими учебных предмета: математику, изучение которой носит теоретический характер, и трудовое обучение, формирование умений и навыков в котором носит практический характер.

        В практической части работы  мы провели изучение уровня  развития наглядно-действенного и наглядно-образного мышления до проведения интегрированных уроков математики и трудового обучения. Результаты первичного исследования показали, что уровень развития этих видов мышления носит слабый характер.

      После проведения интегрированных уроков было проведено контрольное исследование с помощью той же диагностики. Сравнивая полученные результаты с выявленными ранее, мы установили, что эти уроки оказались эффективны для развития рассматриваемых видов мышления.

      Таким образом, можно сделать вывод, что интегрированные уроки математики и трудового обучения способствуют развитию наглядно-действенного и наглядно-образного мышления. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Список  использованной литературы:

1. Абдулин О. А. Педагогика. М.: Просвещение, 1983.
2. Актуальные  вопросы методики преподавания математики.: Сборник трудов. –М.:МГПИ, 1981
3. Артемов А. С. Курс лекций по психологии. Харьков, 1958.
4. Бабанский Ю. К. Педагогика. М.: Просвещение, 1983.
5. Бантева М. А., Бельтюкова Г. В. Методика преподавания математики в начальных классах. – М. Просвещение, 1981
6. Баранов С. П. Педагогика. М.: Просвещение, 1987.
7. Беломестная А. В., Кабанова Н. В. Моделирование в  курсе "Математика и онст-руирование". // Н. Ш., 1990. - №9
8. Болотина Л. Р. Развитие мышления учащихся // Начальная школа - 1994 - №11
9. Брушлинская А. В. Психология мышления и кибернетика. М.: Просвещение, 1970.
10. Волкова С. И. Математика и конструирование // Начальная школа. - 1993 - №1.
11. Волкова С. И., Алексеенко О. Л. Изучение курса "Математика и конструирова-ние". // Н. Ш. – 1990. - №1
12. Волкова С. И., Пчелкина О. Л. Альбом по математике и конструированию: 2 класс. М.: Просвещение, 1995.
13. Голубева Н. Д., Щеглова Т. М. Формирование геометрических представлений у первоклассников // Начальная школа. - 1996. - №3
14. Дидактика средней  школы / Под ред. М. Н. Скаткина. М.: Просвещение, 1982.
15. Житомирский В. Г., Шеврин Л .Н. Путешествие по стране Геометрии. М.:Педагогика - Пресс, 1994
16. Зак А. З. Занимательные  задачи для развития мышления // Начальная школа. 1985. №5
17. Истомина Н. Б. Активация учащихся на уроках математики в начальных классах. – М. Просвещение, 1985.
18. Истомина Н. Б. Методика обучения математике в начальных  классах. М.: Линка-пресс, 1997.
19. Коломинский Я. Л. Человек: психология. М.:1986.
20. Крутецкий В. А. Психология математических способностей школьников. М.: Просвещение, 1968.
21. Кудрякова Л. А. Изучаем геометрию // Начальная школа. - 1996. - №2.
22. Курс общей, возрастной и педагогической психологии: 2/под. Ред. М. В. Гамезо. М.: Просвещение, 1982.
23. Марцинковская Т. Д. Диагностика психического развития детей. М.: Линка-пресс, 1998.
24. Менчинская  Н. А. Проблемы учения и умственного  развития школьника: Избранные психологические труды. М.: Просвещение, 1985.
25. Методика начального обучения математике. /Под общ. ред. А. А. Столяра, В. Л. Дроздова – Минск: Высш. школа, 1988.
26. Моро М. И., Пышкало  Л. М. Методика обучения математике в 1 – 3 кл. – М.: Просвещение, 1978.
27. Немов Р. С. Психология. М., 1995.
28. О реформе общеобразовательной  профессиональной школы.
29. Пазушко Ж. И. Развивающая  геометрия в начальной школе // Начальная школа. - 1999. - №1.
30. Программы обучения по системе Л. В. Занкова 1 – 3 классы. – М.: Просвещение, 1993.
31. Программы общеобразовательных  учебных заведений в РФ начальных  классах (1 – 4 ) – М.: Просвещение, 1992. Программы развивающего обучения. (система Д. Б. Эльковнина – В. В. Давыдова)
32. Рубинштейн  С. Л. Проблемы общей психологии. М., 1973.
33. Стойлова Л. П. Математика. Учебное пособие. М.: Академия, 1998.
34. Тарабарина  Т. И., Елкина Н. В. И учеба, и игра: математика. Ярославль: Академия развития, 1997.
35. Фридман Л. М. Задачи на развитие мышления. М.: Просвещение, 1963.
36. Фридман Л. М. Психологический справочник учителю М.: 1991.
37. Чилингирова Л., Спиридонова Б. Играя, учимся математике. - М.,1993.
38. Шардаков В. С. Мышление школьников. М.: Просвещение, 1963.
39. Эрдниев П. М. Обучение математике в начальных классах. М.: АО "Столетие", 1995.

Информация о работе Развитие наглядно-действенного и наглядно-образного мышления на интегрированных уроках математики и трудового обучения