Проектування компютерної мережі

Автор работы: Пользователь скрыл имя, 20 Марта 2014 в 19:44, дипломная работа

Описание

З'єднані в мережу комп'ютери обмінюються інформацією і спільно використовують периферійне устаткування і пристрої збереження інформації. За допомогою мереж можна розділяти ресурси й інформацію. Нижче перераховані основні задачі, що зважуються за допомогою робочої станції в мережі, і які важко вирішити за допомогою окремого комп'ютера. Комп'ютерна мережа дозволить спільно використовувати периферійні пристрої, включаючи:

Содержание

Вступ 4
1 Топологія локальних мереж 6
1.1 Середовище передачi в локальних мережах 7
1.2 Пряме кабельне з’єднання 8
1.3 Базові мережевi топологiї 9
1.4 Логічна органiзацiя мережi 11
1.5 Технологiя клієнт - сервер 13
1.6 Розгалуженi мережевi топологiї 14
1.7 Корпоративнi мережi 16
2 Середовище передачі в локальних мережах 18
2.1 Коаксiальний кабель 18
2.2 Вита пара провiдникiв 19
2.3 Монтаж кабеля 20
3 Налагодження локальної мережі, діагностики 21
3.1 Підтримка різних видів трафіка 21
3.1.1 Керованість 21
3.1.2 Керування ефективністю 22
3.1.3 Керування конфігурацією 22
3.1.4 Керування обліком використання ресурсів 22
3.1.5 Керування несправностями 23
3.1.6 Керування захистом даних 23
3.2 Налагодження Windows 2000 24
3.3 Функції й архітектура систем керування мережами 30
3.3.1 Функціональні групи задач керування 30
3.3.2 Керування конфігурацією мережі й іменуванням 31
3.3.3 Обробка помилок 31
3.3.4 Аналіз продуктивності і надійності 32
3.4 Моніторинг і оптимізація роботи комп'ютера
в системі Windows 2000 32
3.4.1 Список програм огляду мережі 38
4 Охорона праці 44
4.1 Електробезпечність 44
4.2 Пожежна безпека 45
4.3 Ергономічні вимоги до систем відображення інформації 46
4.4 Опис зорової роботи оператора 47
4.5 Організація робочого місця оператора 50
Висновок 52
Перелік літератури 53
Глосарій

Работа состоит из  1 файл

диплом 2.doc

— 4.44 Мб (Скачать документ)

Концентратори можуть використовуватись в мережах з зiркоподiбною топологiєю (рис.2). В цьому випадку використання концентратора дозволяє суттєво розвантажити сервер мережi вiд операцiй управлiння комутацiєю робочих станцiй.

Найбiльш широке розповсюдження концентратори отримали в мережах з деревоподiбною топологiєю. В першу чергу це характерно для сучасних швидкiсних мереж, якi практично всi побудованi на основi концентраторiв. На мал.1.11 показано один з варiантiв реалiзацiї деревоподiбної топологiї на основi концентраторiв. Тут на самому верхньому (кореневому) рiвнi розмiщений так званий кореневий концентратор, до якого пiдключається мережевий сервер i концентратори бiльш низького (першого) рiвня. На другому рiвнi знаходяться робочi станцiї i концентратор другого рiвня. На третьому рiвнi розмiщенi тiльки робочi станцiї.

 

1.7 Корпоративнi мережi

 

Пiд корпоративною мережею розумiють комп’ютерну мережу, що об’єднує рiзнорiднi локальнi мережi. Поява i розвиток корпоративних мереж зв’язана з великою рiзноманiтнiстю локальних мереж i необхiднiстю об’єднання їх в загальну мережу. Так, в рамках промислового пiдприємства, як правило, iснує кiлька типiв локальних мереж, однi з них орiєнтованi на управлiння виробничими процесами, iншi – на обслуговування адмiнiстративно-господарських служб. Використовувати однорiдну мережу для вирiшення комплексу всiх задач недоцiльно, а в бiльшостi випадкiв i досить важко.

Об’єднання рiзнорiдних мереж в першу чергу пов’язане з узгодженням їх електричних параметрiв, форматiв виводу даних, алгоритмiв передачi iнформацiї та iн.

В даний час iснує ряд пристроїв, з допомогою яких здiйснюється об’єднання рiзноманiтних комп’ютерних мереж мiж собою. До таких пристроїв належать мости, шлюзи, маршрутизатори. Сама назва мiст пiдкреслює, що об’єднуюються протилежнi сторони будь-чого, в нашому випадку – це локальнi мережi. Таким чином, в комп’ютерних мережах мiст – пристрiй, що об’єднує рiзнорiднi мережi. Характерною рисою моста є його здатнiсть здiйснювати вибiркову трансляцiю (фiльтрацiю) блокiв даних з однiєї мережi в iншу на основi аналiзу адрес блокiв даних, що поступають. При необхiдностi здiйснюється перетворення форматiв даних, якi передаються. Тим самим проводиться розподiл iнформацiйних потокiв в рамках корпоративної мережi. Ця властивiсть моста часто використовується для зниження потоку даних в комп’ютерних мережах. Наприклад, з допомогою моста локальна мережа може бути подiлений на два i бiльше сегментiв менших розмiрiв з вiдповiдним перерозподiлом iнформацiйних потокiв даних мiж ними.

При вiдсутностi моста навантаження на весь канал передачi даних дорiвнює сумi всiх iнформацiйних потокiв, тобто S0+S1+S2. Мiст дозволяє роздiлити iнформацiйнi потоки: тепер навантаження в першiй пiдмережi буде рiвним S0+S1, а в другiй -  S0+S2. Якщо доля iнформацiйного потоку S0 є незначною в загальному потоцi iнформацiї (S1»S2>>S0), то навантаження в кожнiй пiдмережi буде значно меншим в порiвняннi з навантаженням вихiдної мережi.

Мости також з успiхом використовуються для з’єднання мереж рiзної швидкодiї, так як в процесi роботи вони здiйснюють промiжне запам’ятовування iнформацiї, яка передається. Наприклад, з допомогою моста можна об’єднати мережi продуктивнiстю 4 Мбит/с з мережею продуктивнiстю 16 Мбит/с.

 

2 Середовище передачі в локальних мережах

 

В якостi середовища передачi iнформацiї в локальних мережах найчастiше використовуються: коаксiальний кабель, кручені пари провiдникiв i оптоволоконнi середовища.

 

2.1 Коаксiальний кабель

 

З метою зменшення затрат на мережеве обладнання в межах невеликих мереж доцiльно використовувати шинну топологiю. Основною перевагою мереж шинної топологiї перед мережами iншої топологiї є те, що вони можуть бути реалiзованi з мiнiмальними апаратними затратами. Для об’єднання мереж в один лiнiйний сегмент достатньо коаксiального кабеля вiдповiдної довжини i мережевих адаптерiв по одному для кожного комп’ютера. В той же час бiльшiсть iнших мережевих топологiй вимагає для своєї реалiзацiї додаткових пристроїв у виглядi концентраторiв i маршрутизаторiв. Слiд звернути увагу, що для включення комп’ютера в мережу шинної топологiї достатньо сегмента коаксiального кабеля вiдповiдної довжини i одного мережевого адаптера. В деревоподiбних мережах при пiдключеннi чергового комп’ютера може знадобитися замiна одного з концентраторiв на концентратор з бiльшим числом виходiв або пiд’єднання ще одного концентратора, що вiдразу вiдобразиться на вартостi мережi. Досвiд експлуатацiї локальних мереж показує, що при невеликiй кiлькостi комп’ютерiв (10-15) доцiльно використовувати мережi з шинною топологiєю на основi коаксiального кабеля.

Фiзично коаксiальний кабель являє собою двохпровiдну лiнiю зв’язку, в якiй один провiдник (центральний) знаходиться всерединi iншого. В якостi центрального провiдника може використовуватися як одножильний, так i багатожильний мiдний провiд. Кабель з багатожильним провiдником бiльш гнучкий та надiйний, однак вартiсть його дещо бiльша. Зовнiшнiй провiдник виконано у виглядi цилiндра, що сплетений з мiдного провода. Центральний i зовнiшнiй провiдники роздiленi мiж собою iзоляцiєю. Зовнiшня оболонка робиться з полiвiнiлхлориду або флуорополiмеру.

Для отримання максимального рiвня сигналу довжина сегмента коаксiального кабеля повинна бути кратною довжинi хвилi сигналу, який передається. Для можливостi визначення мiсць пiдключення робочих станцiй коаксiальний кабель маркується по всiй довжинi через певнi промiжки. Вiдсутнiсть таких помiток є першою ознакою невiдповiдностi кабеля мережевим стандартам. Крiм цього на кожному кабелi повинне бути чiтке маркування, що вказує на його тип.

Коаксiальний кабель є широкополосним засобом зв’язку, що дозволяє передавати iнформацiю в досить великому частотному дiапазонi. Вiн може використовуватися як для одноканальної, так i для багатоканальної передачi. У випадку багатоканальної роботи в рамках одного фiзичного середовища передачi створюється кiлька каналiв передачi даних, наприклад, за рахунок розподiлу частотного дiапазону на окремi пiддiапазони. Такий спосiб широко використовується, наприклад, в телебаченнi для передачi кiлькох програм по коаксiальному кабелю. В наш час в локальних мережах використовується переважно одноканальна передача iнформацiї.

В локальних мережах найчастiше використовується два види кабелiв з хвильовим опором 50 Ом : RG-11 – так званий “товстий” або “жовтий” кабель i RG-58 – “тонкий” кабель.

Кабель RG-11 характеризується бiльшою надiйнiстю i стiйкiстю до перешкод, однак його вартiсть значно бiльша, нiж у кабеля RG58. Кабель RG-11 дозволяє створювати довшi мережевi сегменти в порiвняннi з кабелем RG-58.

 

2.2 Вита пара провiдникiв

 

В даний час в локальних мережах на змiну коаксiальному кабелю приходить кабель на основi витих пар провiдникiв. Вита пара являє собою два скручених провiдники. В якостi провiдникiв використовується мiдний одножильний або багатожильний скручений провiдник. Вартiсть кабеля першого типу менша, однак кабель другого типу є бiльш надiйним та зручним при монтажi кабельних з’єднань. Вцiлому вартiсть кабеля на витiй парi провiдникiв є меншою нiж вартiсть коаксiального кабеля. За зовнiшнiм виглядом кабель на базi витої пари подiбний до телефонного кабеля, але вiдрiзняється вiд нього наявнiстю певного числа скруток на один погонний метр.

За рiвнем екранування витi пари дiляться на неекранованi та екранованi, останнi характеризуються бiльш високими електричними параметрами. Екранованi витi пари   включають виконану з фольги екрануючу iзоляцiю для недопущення електромагнiтних перешкод.

Неекранованi проводи, як правило, мають хвильовий опiр 100 Ом, а екранованi – 150 Ом. Враховуючи широке застосування в комп’ютерних мережах  кабелiв на основi витих пар провiдникiв, розроблено ряд стандартiв, що визначають електричнi та монтажнi параметри кабеля.

В рамках кожного типу кабеля розрiзняють кiлька його категорiй. Наприклад, для неекранованого кабеля з 4 витих пар, який досить широко застосовується в локальних мережах, визначенi категорiї з номерами 3, 4, 5. Основнi вiдмiнностi мiж категорiями – в частотних характеристиках. Так, неекранований кабель категорiї 3 являє собою стандартний телефонний кабель з дiапазоном частот в 15 МГц. Кабель четвертої категорiї забезпечує смугу пропускання в 20 МГц, а кабель п’ятої категорiї – 100 МГц. В залежностi вiд категорiї кабеля визначається максимально допустима довжина сегмента кабеля мiж двома активними пристроями, наприклад, мiж робочою станцiєю i концентратором. Для кабеля категорiї 3 довжина сегмента не повинна перевищувати 100м. Кабелi бiльш високих категорiй можуть забезпечувати зв’язок на бiльш далекi вiдстанi: наприклад, кабель категорiї 5 забезпечує зв’язок на вiдстанi до 150м. В свою чергу, екранованi кабелi мають бiльш високi параметри передачi сигналiв.

Пiдключення робочих станцiй до середовища передачi на базi витих пар провiдникiв здiйснюється при допомозi розйому RJ-45. Зовнi такi розйоми подiбнi до телефонних розйомiв RJ-11, але вiдрiзняються вiд них бiльшим числом контактiв (вiсiм замiсть чотирьох).

 

2.3 Монтаж  кабеля

 

Як вiдомо, збої в роботi середовища передачi призводять до повторної передачi iнформацiї, що, вiдповiдно, зменшує продуктивнiсть локальної мережi. Бiльше того, зiбрана без дотримання вiдповiдних технiчних умов кабельна мережа може призвести до втрати роботоздатностi всiєї мережi вцiлому.

При виборi кабеля крiм електричних параметрiв необхiдно звернути увагу на фiзичнi параметри кабеля з точки зору зручностi та надiйностi монтажу. При iнших рiвних умовах бажано вибирати коаксiальний кабель з рiвною поверхнею i круглим перерiзом по всiй довжинi. З точки зору надiйностi перевагу слiд вiддавати кабелям з центральним багатожильним провiдником в порiвняннi з центральним одножильним провiдником. Крiм того, багатожильний кабель бiльш гнучкий, що робить його бiльш зручним при розводцi та монтажi.

Особливу увагу при прокладцi кабеля слiд звернути на захист вiд зовнiшнiх негативних впливiв. Чим надiйнiше захищено кабель, тим далi i з бiльшою швидкiстю вiн зможе передавати iнформацiю.

Слiд також звернути увагу на надiйне заземлення кабельної системи. Вiдсутнiсть або погане заземлення може призвести до збоїв або навiть до виходу з ладу комп’ютерної мережi.

 

3 Налагодження локальної мережі та її діагностика

 

3.1 Підтримка різних видів трафіка

 

Трафік у мережі складається випадковим образом, однак у ньому відбиті і деякої закономірності. Як правило, деякі користувачі, що працюють над загальною задачею, (наприклад, співробітники одного відділу), найчастіше звертаються з запитами або друг до друга, або до загального сервера, і тільки іноді вони випробують необхідність доступу до ресурсів комп'ютерів іншого відділу. Бажано, щоб структура мережі відповідала структурі інформаційних потоків. У залежності від мережного трафіка комп'ютери в мережі можуть бути розділені на групи (сегменти мережі). Комп'ютери поєднуються в групу, якщо велика частина породжуваних ними повідомлень, адресована комп'ютерам цієї ж групи.

Для поділу мережі на сегменти використовуються мости і комутатори. Вони екранують локальний трафік усередині сегмента, не передаючи за його межі ніяких кадрів, крім тих, котрі адресовані комп'ютерам, що знаходяться в інших сегментах. Таким чином, мережа розпадається на окремі підмережі. Це дозволяє більш раціонально вибирати пропускну здатність наявних ліній зв'язку, з огляду на інтенсивність трафіка усередині кожної групи, а також активність обміну даними між групами.

Однак локалізація трафіка засобами мостів і комутаторів має істотні обмеження. З іншого боку, використання механізму віртуальних сегментів, реалізованого в комутаторах локальних мереж, приводить до повної локалізації трафіка; такі сегменти цілком ізольовані друг від друга, навіть у відношенні широкомовних кадрів. Тому в мережах, побудованих тільки на мостах і комутаторах, комп'ютери, що належать різним віртуальним сегментам, не утворять єдиної мережі.

Для того щоб ефективно консолідувати різні види трафіка в мережі АТМ, потрібно спеціальна попередня підготовка (адаптація) даних, що мають різний характер: кадри – для цифрові даних, сигнали імпульсно-кодової модуляції – для голосу, потоки битов – для відео. Ефективна консолідація трафіка вимагає також обліку і використання статистичних варіацій інтенсивності різних типів трафіка.

 

3.1.1 Керованість

 

ISO внесла великий вклад у  стандартизацію мереж. Модель керування мережі є основним засобом для розуміння головних функцій систем керування мережі. Ця модель складається з 5 концептуальних областей:

- керування ефективністю;

- керування конфігурацією;

- керування обліком використання ресурсів;

- керування несправностями;

- керування захистом даних.

 

3.1.2 Керування ефективністю

 

Ціль керування ефективністю – вимір і забезпечення різних аспектів ефективності мережі для того, щоб міжмережева ефективність могла підтримуватися на прийнятному рівні. Прикладами перемінних ефективності, що могли б бути забезпечені, є пропускна здатність мережі, час реакції користувачів і коефіцієнт використання лінії.

Керування ефективністю включає кілька етапів:

- збір інформації про ефективність по тим перемінним, котрі становлять інтерес для адміністраторів мережі;

- аналіз інформації для визначення нормальних (базовий рядок) рівнів;

- визначення відповідних порогів ефективності для кожної важливої перемінний таким чином, що перевищення цих порогів указує на наявність проблеми в мережі, гідної уваги.

 

3.1.3 Керування конфігурацією

 

Ціль керування конфігурацією – контролювання інформації про мережну і системну конфігурацію для того, щоб можна було відслідковувати і керувати впливом на роботу мережі різних версій апаратних і програмних елементів, тому що всі апаратні і програмні елементи мають експлуатаційні відхилення, погрішності (чи те й інше разом), що можуть впливати на роботу мережі, така інформація важлива для підтримки гладкої роботи мережі.

Кожен пристрій мережі має різноманітну інформацію про версії, асоційованих з ним. Щоб забезпечити легкий доступ, підсистеми керування конфігурацією зберігають цю інформацію в базі даних. Коли виникає яка-небудь проблема, у цій базі даних може бути проведений пошук ключів, що могли б допомогти вирішити цю проблему.

 

3.1.4 Керування обліком використання ресурсів

 

Ціль керування обліком використання ресурсів – вимір параметрів використання мережі, щоб можна було відповідним чином регулювати її використання індивідуальними чи груповими користувачами. Таке регулювання мінімізує число проблем у мережі (тому що ресурси мережі можуть бути поділені виходячи з можливостей джерела) і максимізує равнодоступность до мережі для всіх користувачів.

Информация о работе Проектування компютерної мережі