Автор работы: Пользователь скрыл имя, 08 Января 2012 в 15:51, курсовая работа
Целью выполнения курсовой работы по дисциплине «Математическая статистика» является применение аппарата множественного корреляционно-регрессионного анализа для исследования взаимосвязей между экономическими показателями, выработка навыков использования полученных знаний для анализа практических ситуаций, обоснования и выработки адекватных управленческих решений, а также умение находить решения поставленных задач на компьютере.
Множественный корреляционно-регрессионный анализ позволяет исследовать совместное влияние нескольких факторов (двух и более) на результирующий (зависимый) показатель.
ОГЛАВЛЕНИЕ 2
1. ЦЕЛИ И ЗАДАЧИ. 3
2. ИСХОДНЫЕ ДАННЫЕ. 4
3. РЕШЕНИЕ ПОСТАВЛЕННОЙ ЗАДАЧИ. 7
1. РАСЧЕТ МАТРИЦЫ ПАРНЫХ КОЭФФИЦИЕНТОВ КОРРЕЛЯЦИИ ШЕСТИМЕРНОГО МАССИВА ПРОИЗВЕДЕМ В ПРОГРАММНОМ ПАКЕТЕ STATISTICA 6.0: 7
2. ОЦЕНКИ МАТЕМАТИЧЕСКОГО ОЖИДАНИЯ, ДИСПЕРСИИ И СРЕДНЕКВАДРАТИЧЕСКОГО ОТКЛОНЕНИЯ НАХОДИМ ПО ФОРМУЛАМ 7
3. ОЦЕНКА МАТРИЦЫ ЧАСТНЫХ КОЭФФИЦИЕНТОВ КОРРЕЛЯЦИИ И ПРОВЕРКА ИХ ЗНАЧИМОСТИ. 10
4. ОЦЕНКИ МНОЖЕСТВЕННЫХ КОЭФФИЦИЕНТОВ КОРРЕЛЯЦИИ (ДЕТЕРМИНАЦИИ) И ПРОВЕРКА ИХ ЗНАЧИМОСТИ. 12
5. ИНТЕРПРЕТАЦИЯ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ 13
6. ПОСТРОЕНИЕ УРАВНЕНИЙ МНОЖЕСТВЕННОЙ РЕГРЕССИИ ДЛЯ ЗАВИСИМОГО ПОКАЗАТЕЛЯ И ОТОБРАННЫХ ФАКТОРОВ В ЛИНЕЙНОМ И СТЕПЕННОМ ВИДЕ 14
7. ОЦЕНКА КАЧЕСТВА ПОЛУЧЕННЫХ УРАВНЕНИЙ РЕГРЕССИИ 16
8. ВЫБОР УРАВНЕНИЯ РЕГРЕССИИ, НАИБОЛЕЕ АДЕКВАТНО ОПИСЫВАЮЩЕГО ЗАВИСИМОСТЬ МЕЖДУ ИССЛЕДУЕМЫМИ ПАРАМЕТРАМИ. 18
9. ИНТЕРПРЕТАЦИЯ РЕЗУЛЬТАТОВ РЕГРЕССИОННОГО АНАЛИЗА. 21
БИБЛИОГРАФИЧЕСКИЙ СПИСОК 23
Таким образом, матрица парных коэффициентов корреляции трехмерного массива имеет вид:
|
q3= rij
=
Оценки
математического
ожидания, дисперсии
и среднеквадратического
отклонения:
Y | |||
X5 | |||
X10 |
Проверим значимость парных коэффициентов корреляции с уровнем значимости α=0.05. В этом случае проверяется гипотеза Н0 об отсутствии линейной корреляционной связи между переменными в генеральной совокупности, т.е. Н0: ρ=0. Рассчитывается статистика , и если , то гипотеза Н0 отвергается.
При
k=n-2 – числе степеней свободы,
tкр=t0.95;51=0,063016
ry3x5 | ry3x10 | rx5x10 | |
tнабл | 2,164009 | 2,844175 | 0,142857 |
Таким образом, значимыми коэффициентами являются:
ry3x5=
ry3x10=
rx5x10=
Если переменные коррелируют друг с другом, то на величине парного коэффициента корреляции частично сказывается влияние других переменных. В связи с этим часто возникает необходимость исследовать частную корреляцию между переменными при исключении (элиминировании) влияния одной или нескольких других переменных, т.е. исследовать связь в «чистом» виде.
Частный коэффициент корреляции рассчитывается по формуле:
Таким образом, матрица частных коэффициентов корреляции трехмерного массива имеет вид:
|
rij.k =
Проверим значимость частных коэффициентов корреляции с уровнем значимости α=0.05. В этом случае проверяется гипотеза Н0 об отсутствии линейной корреляционной связи между переменными в генеральной совокупности, т.е. Н0: ρ=0. Рассчитывается статистика , и если , то гипотеза Н0 отвергается.
При
k=n-3 – числе степеней свободы,
tкр=t0.95;50=0,063022
ry3x5.x10 | ryx10.x5 | rx5x10.y3 | |
tнабл | 2,364618 | 2,964547 | 0,979082 |
Таким образом, все частные коэффициенты являются значимыми.
С надежностью γ=1-α=0.95 построим доверительные интервалы для значимых частных коэффициентов корреляции.
Интервальная оценка для ρyx1.x5 находится с помощью статистики Фишера (z-преобразование):
при ry3x5.x10=0.317144.
Вначале строим доверительный интервал для M(z):
где - нормированное отклонение z, определяемое с помощью функции Лапласа:
.
,
при = =1,96.
Или .
Переход от z к ρ осуществляем по формуле :
для z=0.048469
и для z=0.608469.
Таким образом, получаем интервальную оценку для ρy3x5.x10:
.
Аналогичные
расчеты при определении границ
доверительных интервалов выполняем
для ρy3x10.x5
и ρх5x10.y3 .
ry3x5.x10=0.317144 | ry3x10.x5=0.386645 | rx5x10.y3= -0.13715 | |
z | 0.328469 | 0,40784928 | -0,1380198 |
M(z) | |||
ρij.k |
Теснота
линейной взаимосвязи одной переменной
Xi с совокупностью других
(p-1) переменных Xj, рассматриваемой
в целом, измеряется с помощью множественного
(или совокупного) коэффициента
корреляции ρi.12…p
, который является обобщением парного
коэффициента корреляции ρij
Множественные коэффициенты корреляции определяются по формуле:
где - определитель матрицы qp .
В
нашем случае
,
,
,
, тогда
, , .
Коэффициент
детерминации (показывает, какую долю
вариации исследуемой переменной объясняет
вариация остальных переменных) рассчитывается
как квадрат выборочного
, , .
Проверка значимости множественного коэффициента корреляции осуществляется с помощью F-распределения. Рассчитывается статистика: ,
и если, F > , то R значимо отличается от нуля.
В нашем
случае k1=p-1 и k2=n-p
(p – совокупность всех переменных
выборки), p=3, n=53,
α=0.05,
=3.20.
R2 | 0.2254 | 0.1029 | 0.1546 |
Fнабл | 7.273979 | 2.866818 | 4.571566 |
Таким
образом, значимо отличаются
от нуля Ry
и Rx10.
Парные коэффициенты корреляции:
ry3x5 | ry3x10 | rx5x10 |
Частные коэффициенты корреляции:
ry3x5.x10 | ryx10.x5 | rx5x10.y3 |
0.317144 | 0.386645 | -0.13715 |
Множественные коэффициенты корреляции:
0,474763 | 0,320780 | 0,393192 |
Вывод: получив результаты корреляционного анализа можно сделать следующие экономические выводы:
Таким образом, с помощью многомерного корреляционного анализа мы выявили необходимые параметры в трехмерную модель и исследовали связь и зависимость между ними. Также предположили, что функция связи результативного показателя и факторов будет иметь не линейный вид, но об этом уверенно мы сможем судить только после множественного регрессионного анализа.
6.
Построение уравнений
множественной регрессии
для зависимого показателя
и отобранных факторов
в линейном и степенном
виде
6.1. Линейное уравнение регрессии y=b0+b1x1+b2x2
Информация о работе Множественный корреляционно-регрессионный анализ