Множественный корреляционно-регрессионный анализ

Автор работы: Пользователь скрыл имя, 08 Января 2012 в 15:51, курсовая работа

Описание

Целью выполнения курсовой работы по дисциплине «Математическая статистика» является применение аппарата множественного корреляционно-регрессионного анализа для исследования взаимосвязей между экономическими показателями, выработка навыков использования полученных знаний для анализа практических ситуаций, обоснования и выработки адекватных управленческих решений, а также умение находить решения поставленных задач на компьютере.
Множественный корреляционно-регрессионный анализ позволяет исследовать совместное влияние нескольких факторов (двух и более) на результирующий (зависимый) показатель.

Содержание

ОГЛАВЛЕНИЕ 2
1. ЦЕЛИ И ЗАДАЧИ. 3
2. ИСХОДНЫЕ ДАННЫЕ. 4
3. РЕШЕНИЕ ПОСТАВЛЕННОЙ ЗАДАЧИ. 7
1. РАСЧЕТ МАТРИЦЫ ПАРНЫХ КОЭФФИЦИЕНТОВ КОРРЕЛЯЦИИ ШЕСТИМЕРНОГО МАССИВА ПРОИЗВЕДЕМ В ПРОГРАММНОМ ПАКЕТЕ STATISTICA 6.0: 7
2. ОЦЕНКИ МАТЕМАТИЧЕСКОГО ОЖИДАНИЯ, ДИСПЕРСИИ И СРЕДНЕКВАДРАТИЧЕСКОГО ОТКЛОНЕНИЯ НАХОДИМ ПО ФОРМУЛАМ 7
3. ОЦЕНКА МАТРИЦЫ ЧАСТНЫХ КОЭФФИЦИЕНТОВ КОРРЕЛЯЦИИ И ПРОВЕРКА ИХ ЗНАЧИМОСТИ. 10
4. ОЦЕНКИ МНОЖЕСТВЕННЫХ КОЭФФИЦИЕНТОВ КОРРЕЛЯЦИИ (ДЕТЕРМИНАЦИИ) И ПРОВЕРКА ИХ ЗНАЧИМОСТИ. 12
5. ИНТЕРПРЕТАЦИЯ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ 13
6. ПОСТРОЕНИЕ УРАВНЕНИЙ МНОЖЕСТВЕННОЙ РЕГРЕССИИ ДЛЯ ЗАВИСИМОГО ПОКАЗАТЕЛЯ И ОТОБРАННЫХ ФАКТОРОВ В ЛИНЕЙНОМ И СТЕПЕННОМ ВИДЕ 14
7. ОЦЕНКА КАЧЕСТВА ПОЛУЧЕННЫХ УРАВНЕНИЙ РЕГРЕССИИ 16
8. ВЫБОР УРАВНЕНИЯ РЕГРЕССИИ, НАИБОЛЕЕ АДЕКВАТНО ОПИСЫВАЮЩЕГО ЗАВИСИМОСТЬ МЕЖДУ ИССЛЕДУЕМЫМИ ПАРАМЕТРАМИ. 18
9. ИНТЕРПРЕТАЦИЯ РЕЗУЛЬТАТОВ РЕГРЕССИОННОГО АНАЛИЗА. 21
БИБЛИОГРАФИЧЕСКИЙ СПИСОК 23

Работа состоит из  1 файл

Курсач ТВ.doc

— 829.00 Кб (Скачать документ)
 

      

 

 

 

       Таким образом, матрица парных коэффициентов корреляции трехмерного массива имеет вид:

       

  Y X5 X10
Y 1.00 0.29 0.37
X5 0.29 1.00 -0.02
X10 0.37 -0.02 1.00
 

                             

                              q3= rij  = 
 
 

       Оценки  математического  ожидания, дисперсии  и среднеквадратического  отклонения: 

 
Y
X5
X10
 

       Проверим  значимость парных коэффициентов корреляции с уровнем значимости α=0.05. В этом случае проверяется гипотеза Н0 об отсутствии линейной корреляционной связи между переменными в генеральной совокупности, т.е. Н0: ρ=0. Рассчитывается статистика , и если , то гипотеза Н0 отвергается.

       При k=n-2 – числе степеней свободы, tкр=t0.95;51=0,063016 

       
  ry3x5 ry3x10 rx5x10
tнабл 2,164009 2,844175 0,142857
 
 
 

       Таким образом, значимыми коэффициентами являются:

       ry3x5=

       ry3x10=

       rx5x10=  

  1. Оценка  матрицы частных  коэффициентов корреляции и проверка их значимости.
 

      Если  переменные коррелируют друг с другом, то на величине парного коэффициента корреляции частично сказывается влияние  других переменных. В связи с этим часто возникает необходимость  исследовать частную корреляцию между переменными при исключении (элиминировании) влияния одной или нескольких других переменных, т.е. исследовать связь в «чистом» виде.

      Частный коэффициент корреляции рассчитывается по формуле:

       

: 

       

       

         

       Таким образом, матрица частных коэффициентов корреляции трехмерного массива имеет вид:

       

       
  Y X1 X5
Y 1.00 0.317144 0.386645
X1 0.317144 1.00 -0.13715
X5 0.386645 -0.13715 1.00
 
 

                       rij.k

       Проверим  значимость частных коэффициентов  корреляции с уровнем значимости α=0.05. В этом случае проверяется гипотеза Н0 об отсутствии линейной корреляционной связи между переменными в генеральной совокупности, т.е. Н0: ρ=0. Рассчитывается статистика , и если , то гипотеза Н0 отвергается.

       При k=n-3 – числе степеней свободы, tкр=t0.95;50=0,063022 
 
 

       
  ry3x5.x10 ryx10.x5 rx5x10.y3
tнабл 2,364618 2,964547 0,979082
 
 
 

       Таким образом, все частные коэффициенты являются значимыми.

       С надежностью γ=1-α=0.95 построим доверительные  интервалы для значимых частных  коэффициентов корреляции.

       Интервальная  оценка для ρyx1.x5 находится с помощью статистики Фишера (z-преобразование):

         при ry3x5.x10=0.317144.

      Вначале строим доверительный интервал для  M(z):

,

где - нормированное отклонение z, определяемое с помощью функции Лапласа:

        .

        ,

при = =1,96.

      Или .

      Переход от z к ρ осуществляем по формуле :

        для z=0.048469

и  для z=0.608469.

      Таким образом, получаем интервальную оценку для ρy3x5.x10:

       . 
 

      Аналогичные расчеты при определении границ доверительных интервалов выполняем  для ρy3x10.x5 и ρх5x10.y3 . 

  ry3x5.x10=0.317144 ry3x10.x5=0.386645 rx5x10.y3= -0.13715
z 0.328469 0,40784928 -0,1380198
M(z)
ρij.k
 
 
 
  1. Оценки  множественных коэффициентов  корреляции (детерминации) и проверка их значимости.
 

      Теснота линейной взаимосвязи одной переменной Xi с совокупностью других (p-1) переменных Xj, рассматриваемой в целом, измеряется с помощью множественного (или совокупного) коэффициента корреляции ρi.12…p , который является обобщением парного коэффициента корреляции ρij 

      Множественные коэффициенты корреляции определяются по формуле:

где - определитель матрицы qp .

      В нашем случае , , , , тогда  

       , , .

      Коэффициент детерминации (показывает, какую долю вариации исследуемой переменной объясняет  вариация остальных переменных) рассчитывается как квадрат выборочного множественного коэффициента корреляции:

       , , .

      Проверка  значимости множественного коэффициента корреляции осуществляется с помощью  F-распределения. Рассчитывается статистика: ,

и если, F > , то R значимо отличается от нуля. 

В нашем  случае k1=p-1 и k2=n-p (p – совокупность всех переменных выборки), p=3, n=53, α=0.05, =3.20. 

 
R2 0.2254 0.1029 0.1546
Fнабл 7.273979 2.866818 4.571566
 

      Таким образом, значимо отличаются от нуля Ry и Rx10. 
 
 
 
 

  1. Интерпретация полученных результатов
 

      Парные  коэффициенты корреляции:

      
ry3x5 ry3x10 rx5x10
 
 
 

      Частные коэффициенты корреляции:

      
ry3x5.x10 ryx10.x5 rx5x10.y3
0.317144 0.386645 -0.13715
 
 
 

      Множественные коэффициенты корреляции:

0,474763 0,320780 0,393192
 

      Вывод: получив результаты корреляционного  анализа можно  сделать следующие  экономические выводы:

    1. Парные коэффициенты корреляции все значимые, но значения между факторами  и результативным показателем меньше 0.5, значит, связь есть, но слабая (допустимая), а между самими факторами связь сильная.
    2. Если исключить влияние других факторов на парные коэффициенты корреляции, то видно, что при исключении влияния того или другого фактора значение  частных коэффициентов корреляции между результативным показателем и одним из факторов значительно уменьшается, что может говорить о том, что  факторы взаимодействуют, т.е. усиливают друг  друга, так что функция связи не линейная, а степенная. При  исключение влиянии результативного показателя частный коэффициент корреляции уменьшился, но не значительно.
    3. Множественные коэффициенты все значимы и , близки к 1, то можно судить о тесноте связи.

    Таким образом,  с помощью многомерного корреляционного анализа мы выявили  необходимые параметры в трехмерную модель и исследовали связь и зависимость между ними. Также предположили, что функция связи результативного показателя и факторов будет иметь не линейный вид, но об этом уверенно мы сможем судить только после множественного регрессионного анализа.

6. Построение уравнений множественной регрессии для зависимого показателя и отобранных факторов в линейном и степенном виде 

         6.1. Линейное уравнение регрессии y=b0+b1x1+b2x2

Информация о работе Множественный корреляционно-регрессионный анализ