Ряды распределения, корреляционно-регрессионный анализ

Автор работы: Пользователь скрыл имя, 16 Июля 2011 в 18:11, контрольная работа

Описание

1. Построить ряд распределения по первичным данным о стоимости квартир.
2. Определить количество групп, величину интервала, показатели структуры, кумулятивную численность, середину интервала.
3. Построить гистограмму, полигон, кумуляту распределения квартир по стоимости.
4. Определить характеристики центра распределения.
5. Определить медиану и моду графически.
6. Рассчитать абсолютные и относительные показатели вариации.
7. Определить коэффициент асимметрии, охарактеризовать асимметричность с помощью характеристик центра распределения.
8. Определить межгрупповую, среднюю из групповых и общую дисперсии, коэффициент детерминации.
9. На основе полученных абсолютных, относительных и средних величин выполните качественный анализ количественных оценок.

Работа состоит из  1 файл

статистика.doc

— 531.00 Кб (Скачать документ)

           Параметры a и b , согласно методу наименьших квадратов, находятся решением системы нормальных уравнений, полученной путем алгебраического преобразования условия:

           

   где уt - расчетные уровни, а yi – фактические уровни.

   Yt = ¦ (t),

   где t=0,1,2…n – изменения времени.

   Параметр  «b» в линейной функции характеризует  средний абсолютный прирост, а в  показательной – средний темп роста.

   Параметр  «а» в обеих функциях = это теоретическое  значение при t=0.

   Рассчитываются  параметры трендовых уравнений методом наименьших квадратов, при этом нелинейные функции приводятся к линейному виду.

   Система нормальных уравнений имеет вид:

    

    

    

     Если начало отсчета времени (t=0) перенести в середину интервала, то Σt=0, а следовательно: 

       ,

   где t – обозначение условного времени.

   Для непарной численности уровней в  динамическом ряду значение условного  времени с шагом, равным1, где в  центре – значение «0».

   Так, для расчетного непарного количества уровней (n=5) значения t будут такими:

          2004  2005  2006  2007  2008

          -2  -1  0  1  2

   a=(236+270+240+274+265)/5=257

   b=(236*(-2)+270*(-1)+240*0+274*1+265*2)/(4+1+1+4)=62/10=6,2

   Тогда уравнение прямой выравнивания принимает  вид:

   Y=257+6,2t.

   Таблица 3.3.

Год Объем пр-ва, млн.грн., yi ti ti² yi·ti Yt yi-Yt
2004 236 -2 4 -472 244,6 -8,6
2005 270 -1 1 -270 250,8 19,2
2006 240 0 0 0 257 -17
2007 274 1 1 274 263,2 10,8
2008 265 2 4 530 269,4 -4,4
Всего 1285 0 10 62 1285 0,0
 

   Основную  тенденцию изменения показателей объемов производства, исходя из аналитического уравнения, можно охарактеризовать как тенденцию к росту со средним ежегодным приростом 6,2 млн.грн.

   Экстраполяцией  тренда в статистике называют продолжение  выявленной тенденции за границы  ряда динамики.

-экстраполяция методом среднего цепного прироста:

     Средний абсолютный цепной прирост рассчитывается по формуле средней арифметической из абсолютных цепных приростов:

      ,

      где n – количество периодов.

      =29/4=7,25

      Экстраполяция методом среднего цепного прироста:

      где t – условное время (=1,2,3…)

      Рассчитаем  данные экстраполяции на 3 периода (3 года):

      2009=236+7,25*5=272,25

      2010=236+7,25*6=279,5

      2011=236+7,25*7=286,75

      -экстраполяция  показателей методом аналитического выравнивания.

      Прогнозные  данные на ближайшие три года составят по формуле:

      yt=257+6,2t

      2009=257+6,2*3=275,6

      2010=257+6,2*4=281,8

      2011=257+6,2*5=288. 

  
  1. см. пункт 3.
 
  
  1. Построим  линейный график показателей.

 Рис.3.1. Линейный график объемов производства строительной корпорации (8 управлений) с экстраполяцией показателя на 2009-2011гг. методом среднего цепного прироста и методом аналитического выравнивания по прямой yt=257+6,2t.

  

  1. см. пункт 3
 

    Выводы

     С целью анализа ряда динамики производства строительной корпорации с помощью коэффициента  смыкания были получены ряды (табл.3.1.)

     Среднегодовое значение объема производства за период 2004-2008гг. составило 257 млн.грн.

     Анализ  динамики объема производства за период 2004-2008гг. показал, что показатель вырос на 29 млн.грн. или на 12,3% от уровня 2004г.

     Аналитическое выравнивание ряда динамики объема производства по прямой тренда: yt=257+6,2t показало, что показатель имеет тенденцию к увеличению, среднегодовой прирост составляет 6,2 млн.грн.

     Выполненная двумя методами экстраполяция объема производства строительной корпорации (8 управлений) свидетельствует, что  через три ода, при сохранении выявленных тенденций, объем производства будет равен приблизительно 288 млн.грн. 
 
 
 

       

Задание №4

     Вам, как главному бухгалтеру продовольственного магазина, необходимо сделать сравнительный анализ изменения товарооборота.

Вид с/х продукции Количество, тыс. усл. ед. Цена  за ед. прод., усл. ден. ед.
2003 2004 2003 2004
Молоко 8 6 10 20
Капуста 12 14 2 3
Мясо 20 21 22 41
 

  Определите:

  1. индивидуальные индексы товарооборота, цены и количества проданных товаров по каждому виду с/х продукции;
  2. общий индекс товарооборота;
  3. общий индекс количества проданного товара с базисными «весами» (формула Ласпейреса), с «весами» отчетного периода (формула Пааше) и по «идеальной» формуле Фишера;
  4. общий индекс цены с базисными «весами» (формула Ласпейреса), с «весами» отчетного периода (формула Пааше) и по «идеальной» формуле Фишера;
  5. абсолютный прирост товарооборота; абсолютный прирост товарооборота, обусловленный изменением физического объема; абсолютный прирост товарооборота, обусловленный изменением цены за ед. с/х продукции;
  6. результаты проанализируйте, используя общие и индивидуальные индексы.
 
 

     Решение

  1. Индивидуальные индексы характеризуют изменения отдельных элементов статистической совокупности. Индивидуальный индекс цен с/х продукцию, количество проданной продукции и стоимость продукции по видам.
    Вид с/х продукции Количество, тыс. усл. ед. Цена  за ед. прод., усл. ден. ед. Стоимость проданной продукции, тыс. усл. ед.
    2003 2004 iq 2003 2004 ip 2003 2004 ipq
    Молоко 8 6 0,75 10 20 2 80 120 1,5
    Капуста 12 14 1,17 2 3 1,5 24 42 1,75
    Мясо 20 21 1,05 22 41 1,86 440 861 1,96
      - - - 34 64 - 544 1023 -
                       
 

         -Индивидуальный  индекс цен на с/х продукцию по видам:

         для молока:   или 200%

         для капусты: или 150%

         для мяса: или 186%

         -Стоимость продажи с/х продукции по видам:

         для молока: или 150%

         для капусты: или 175%

         для мяса: или 196%

  1. общий индекс отражает изменения всех элементов сложного явления.

    Общий индекс цен:

     или 186%

    Общий индекс физического объема:

    или 101,1%

    Общий индекс стоимости проданной продукции:

     или 188%

    Индекс произведения равен произведению индексов.

    Проверка:

    Ipq=1,011*,86=1,88 или 188%

  1. Общий индекс количества проданной продукции с базисными «весами» по формуле Ласпейреса:

     или 101,1%

    Индекс с  «весами» отчетного периода по формуле  Пааше:

    или 100,7%

    Общий индекс количества проданной продукции  по «идеальной» формуле Фишера:

     или 100,9%

  1. Общий индекс цен на с/х продукцию с базисными «весами» (формула Ласпейреса), с «весами» отчетного периода (формула Пааше) и по «идеальной» формуле Фишера.

    Формула Ласпейреса:

     или 187%

    Формула Пааше:

      или 186%

    Формула Фишера:

    или 186,4%

  1. Абсолютный прирост стоимость с/х продукции, обусловленный изменением физического объема рассчитывается по формуле:

    Δq=(6*10+14*2+21*22)-(10*8+2*12+22*20)=550-540=6, тыс. усл. ден.ед. 

    Абсолютный  прирост стоимости продукции, обусловленный  изменением уровня цен на с/х продукцию, рассчитывается по формуле:

    Δp=(20*6+3*14+41*21)-(10*6+2*14+22*21)=1023-550=473, (тыс.усл.ден.ед.)

    Абсолютный  прирост стоимости квартир:

    Δpq=(20*6+3*14+41*21)-(10*8+2*12+22*20)=1023-544=479, (тыс.усл.ден.ед.)

Информация о работе Ряды распределения, корреляционно-регрессионный анализ