Автор работы: Пользователь скрыл имя, 16 Мая 2011 в 15:06, шпаргалка
Работа содержит ответы на вопросы по дисциплине "Статистика".
Начальным моментом k-го порядка αk случайной величины X называется математическое ожидание k-ой степени случайной величины X.
, α=1,2,3..
k=1 α1=M[X]=m
k=2 α2=M[X2]
Центрированная случайная величина - это величина, равная X’=X-MX
Покажем, что математическое ожидание MX’ равно 0.
Центральным моментом k-го порядка μk случ.величины Х называется матем.ожидание k-ой степени отклонения Х от ее мат.ожидания m
, k=1,2,3…
Модой dx дискретной случайной величины, принимающей зн-я x1,x2.. , называется такое зн-е случ.величины,кот.имеет наибольшую вер-ть: P[X= dx]=max P[X=xk] (при условии что xk –единств.зн-е,удовлетвор.этому условию.
Медианой hx случайной величины называется такое ее значение, для которого окажется ли случайная величина меньше этого значения. Квантиль порядка р=0,5 назыв. медианой hx случ.вел-ны Х (hx=х0,5)
Для непрерывной случайной величины медиана это абсцисса точки, в которой площадь под кривой распределяется пополам.
7.Повторение испытаний. Схема Бернулли. Биномиальное распределение. Формула Пуассона
Последовательные испытания наз-ся независимыми, если вероятность осущ-я любого исхода в n-ом по счету эксперименте не зависит от исходов предыдущих испытаний.
Схема испытаний Бернулли:
1. послед-ть независимых испытаний с двумя исходами («успех» и «неуспех»);
2. эксперимент
проводится n раз в неизменных
усл-ях, т.е. вероятности «успеха»(p)
и «неуспеха»(1-p=q) неизменны.
n-число испытаний, k-число благоприятных исходов, событие А – «успех», Х – случ.величина, обозначающая число «успехов» в n испытаниях по сх. Бернулли (Х=0,1,2,…n).
- формула Бернулли, где Cnk-число случайного размещения события А в послед-ти из n мест.
Соответствующее распр-е случ.вел.Х наз-ся биномиальным распр-ем. Свойства бином.распр-я:
1. ;
2. -матем.ожидание
3. -дисперсия.
Приближенная формула Пуассона: . При , при условии (-интенсивность потока): = = ; .
11.Непрерывные случайные величины. Функция распределения и плотность распределения, и их Свойства. Механическая интерпретация. Свойства мат. Ожидания и дисперсии. Квантили. Мода. Медиана. Асимметрия и эксцессСлучайная величина Х называется непрерывной, если для нее существует неотрицательная частично-непрерывная функция f(x) , удовлетворяющая для любых значений x равенству (случайные величины, возможные значения которых образуют некоторый интервал). fx - плотность распределения вероятностей (плотность распр-я единичной массы на инт-ле). Св-ва:
если x [a;b]: 1. f(x)>=0; 2. ; ;
если
: 1. f(x)>=0; 2.
;
- норм.распр-е.
F(x) – ф-я распределения для непрер.случ.величин, определена на всей числовой оси, ее значение в точке х равно вероятности того, что случайная величина примет значение, меньшее чем х. Свойства:
Мат.ожидание: , , где f(x)dx=P[x<X<x+dx] – элемент вер-ти. Свойства:
Дисперсия: , .Начальный момент k-го порядка - ;
Центральный момент k-го порядка - .Асимметрия - , где - ср.квадратич.отклонение
Эксцесс – хар-ет форму распред-я в окрестности вершины
Квантиль – абсцисса (точка на оси х), которая слева от себя отделяет площадь под графиком плотности, равную Р. F(xp)=P – порядок квантили. 1. ; 2. . Квантиль порядка 0,5 – х0,5 – для любого распр-я наз-ся медианой (h) (отделяет ½ площади под плотностью слева и справа). Если распр-е симметрично, то h совпадает с мат.ож. m.
Мода (d) – абсцисса, при кот. плотность распр-я имеет максимум: f(d)=max
- моды нет (несколько лок.
12. Нормальное распределение. Вероятность попадания в интервал, симметричный относительно мат. ожидания. Асимметрия и эксцесс распределения. Вычисление центрального момента порядка k. Стандартизированное нормальное распределение и его свойство. Правило трех сигм.
Нормальное распределение N(m,s2) имеет плотность, определяемую формулой:
Функция распр-я F(х) норм.распр-я равна:
Параметры m и s2 норм.распр-я равны соответственно мат.ожиданию и дисперсии случ.вел-ны Х:
Центральные моменты норм.распр-я можно вычислить из рекуррентного ур-ния:
μk+2=(k+1)s2μk , k=0,1,2,… (причем μ0=1)
Для
норм.распр-я все центр.
Коэффициент ассиметрии ax норм.распр-я равен 0.
ax=μ3/s3
Из формул получаем: μ2=s2, μ4=3s4
Коэффициент эксцесса равен 0: ех= μ4/s4-3=0
Стандартизированное нормальное распределение и его свойство.
Норм.распр-е с нулевым мат.ожиданием и дисперсией,равной 1, назыв.стандартным норм.распр-нием:
Х~ N(0,1)
Ф-ла плотности j(х) станд.норм.закона равна
, -¥<x<¥
А функция распр-я:
Так
как плотность распр-я станд.
Зн-я функции Ф(х) использ.при вычислении вер-ти попадания норм.распр-ной случ.величины Х в заданный интервал:
В практич.задач часто приходится вычислять вер-ть попадания случайной величины Х~ N(m,s2) в интервал, симметричный относительно ее математического ожидания m:
Используя получ.рез-тат,вычислим вер-ть отклоенения от мат.ожидания норма.распр-ной случ.вел-ны на вел-ну,равную трем средневкадратич.отклонениям, 3s:
P[|X-m|<3s]=2Ф(3)-1»2*0,9987-
Этот результат известен как «правило трех сигм»: с вер-тью 0,9974(практически =1)зн-е нормально распределенной случ.вел-ны лежит в интервале (m-3s;m+3s)
Правило
трех сигм это правило часто используется
для подтверждения или отбрасывания гипотезы
о нормальном распределении случайной
величины.
13. Системы дискретных случайных величин. Таблица распределения. Независимость. Ковариация. Механическая интерпретация. Условные распределения.
Рассмотрим две случайные величины X и Y, определенные на одном дискретном вероятностном пр-ве (Ω,F,P). Обозначим значения, кот. принимает случ. величина Х через х1, х2, …, хn, а значения случ. величины Y через y1,y2,…,yn. Распределение вероятностей X и Y обозначим соответственно pх1, pх2, …, pхn и py1, py2, …, pyn. Вер-ть события, состоящего в том, что Х=хi и Y=yj, обозначим как P[X=xi; Y=yj]=pij.
Опр Система равенств P[X=xi; Y=yj]=pij, pij>0, , pij=1, i=1,2, .., n, j=1,2,..,m определяет совместное распределение дискретных случайных величин X и Y или системы 2-ух дискр. случ. величин (X,Y).
Распределение
системы 2-ух дискр. случ. вел. (X,Y) записывают
в виде таблицы распределения.
Таблица (1)
Суммируя вер-ти pij по строкам, получим рапределение случ. вел X: , i=1,2, .., n, суммирование вер-тей pij по столбцам дает распределение случ. вел. Y: , j=1,2,..,m. Аналогично определяется распределение системы более чем 2-ух случ. вел.