Статистика, основные положения

Автор работы: Пользователь скрыл имя, 05 Декабря 2011 в 21:22, реферат

Описание

Статистика как наука представляет собой целостную систему научных дисциплин: теория статистики, экономическая статистика и ее отрасли, социальная статистика, отраслевые и специальные статистики.
Общая теория статистики является наукой о наиболее общих принципах и методах статистического исследования социально-экономических явлений и решает другие общественные вопросы.
Она разрабатывает понятийный аппарат и систему категорий статистической науки, ра

Работа состоит из  1 файл

СТАТИСТИКА.docx

— 195.80 Кб (Скачать документ)

    Для характеристики влияния изменений Х на вариацию У служат методы регрессионного анализа. В случае парной линейной зависимости  строится регрессионная модель

    где n число наблюдений; 
    а0, а1 – неизвестные параметры уравнения;  
    ei – ошибка случайной переменной У.

    Уравнение регрессии  записывается как 

    где Уiтеор – рассчитанное выравненное значение результативного признака после подстановки в уравнение X.

    Параметры а0 и а1 оцениваются с помощью процедур, наибольшее распространение из которых получил метод наименьших квадратов. Его суть заключается в том, что наилучшие оценки ag и а, получают, когда

    т.е. сумма  квадратов отклонений эмпирических значений зависимой переменной от вычисленных  по уравнению регрессии должна быть минимальной. Сумма квадратов отклонений является функцией параметров а0 и а1. Ее минимизация осуществляется решением системы уравнений

    Можно воспользоваться  и другими формулами, вытекающими  из метода наименьших квадратов, например:

    Аппарат линейной регрессии достаточно хорошо разработан и, как правило, имеется в наборе стандартных программ оценки взаимосвязи  для ЭВМ. Важен смысл параметров: а1 – это коэффициент регрессии, характеризующий влияние, которое оказывает изменение Х на У. Он показывает, на сколько единиц в среднем изменится У при изменении Х на одну единицу. Если а, больше 0. то наблюдается положительная связь. Если а имеет отрицательное значение, то увеличение Х на единицу влечет за собой уменьшение У в среднем на а1. Параметр а1 обладает размерностью отношения У к X.

    Параметр a0 – это постоянная величина в уравнении регрессии. На наш взгляд, экономического смысла он не имеет, но в ряде случаев его интерпретируют как начальное значение У.

    Например, по данным о стоимости оборудования Х и производительности труда  У методом наименьших квадратов  получено уравнение 

    У = -12,14 + 2,08Х.

    Коэффициент а, означает, что увеличение стоимости  оборудования на 1 млн руб. ведет  в среднем к росту производительности труда на 2.08 тыс. руб.

    Значение функции  У = a0 + а1Х называется расчетным значением и на графике образует теоретическую линию регрессии.

    Смысл теоретической  регрессии в том, что это оценка среднего значения переменной У для  заданного значения X.

    Парная корреляция или парная регрессия могут рассматриваться  как частный случай отражения  связи некоторой зависимой переменной, с одной стороны, и одной из множества независимых переменных – с другой. Когда же требуется  охарактеризовать связь всего указанного множества независимых переменных с результативным признаком, говорят  о множественной корреляции или множественной регрессии.

    8.3. Оценка значимости  параметров взаимосвязи

    Получив оценки корреляции и регрессии, необходимо проверить их на соответствие истинным параметрам взаимосвязи.

    Существующие  программы для ЭВМ включают, как  правило, несколько наиболее распространенных критериев. Для оценки значимости коэффициента парной корреляции рассчитывают стандартную  ошибку коэффициента корреляции:

    В первом приближении  нужно, чтобы  . Значимость rxy проверяется его сопоставлением с , при этом получают

    где tрасч – так называемое расчетное значение t-критерия.

    Если tрасч больше теоретического (табличного) значения критерия Стьюдента (tтабл) для заданного уровня вероятности и (n-2) степеней свободы, то можно утверждать, что rxy значимо.

    Подобным же образом на основе соответствующих  формул рассчитывают стандартные ошибки параметров уравнения регрессии, а  затем и t-критерии для каждого  параметра. Важно опять-таки проверить, чтобы соблюдалось условие tрасч > tтабл. В противном случае доверять полученной оценке параметра нет оснований.

    Вывод о правильности выбора вида взаимосвязи и характеристику значимости всего уравнения регрессии  получают с помощью F-критерия, вычисляя его расчетное значение:

    где n – число  наблюдений;  
    m – число параметров уравнения регрессии.

    Fрасч также должно быть больше Fтеор при v1 = (m-1) и v2 = (n-m) степенях свободы. В противном случае следует пересмотреть форму уравнения, перечень переменных и т.д.

    8.4. Непараметрические  методы оценки  связи

    Методы корреляционного  и дисперсионного анализа не универсальны: их можно применять, если все изучаемые  признаки являются количественными. При  использовании этих методов нельзя обойтись без вычисления основных параметров распределения (средних величин, дисперсий), поэтому они получили название параметрических методов.

    Между тем  в статистической практике приходится сталкиваться с задачами измерения  связи между качественными признаками, к которым параметрические методы анализа в их обычном виде неприменимы. Статистической наукой разработаны  методы, с помощью которых можно  измерить связь между явлениями, не используя при этом количественные значения признака, а значит, и параметры  распределения. Такие методы получили название непараметрических.

    Если изучается  взаимосвязь двух качественных признаков, то используют комбинационное распределение  единиц совокупности в форме так  называемых таблиц взаимной сопряженности.

    Рассмотрим  методику анализа таблиц взаимной сопряженности  на конкретном примере социальной мобильности  как процесса преодоления замкнутости  отдельных социальных и профессиональных групп населения. Ниже приведены  данные о распределении выпускников  средних школ по сферам занятости  с выделением аналогичных общественных групп их родителей.

    Занятия родителей 
    Число детей, занятых  в
    Всего
    Промышлен- 
    ности и стро- 
    ительстве
    сельском  
    хозяйстве
    сфере  
    обслужи- 
    вания
    сфере интел- 
    лектуального  
    труда
    1. Промышленность  и строительство 
    2. Сельское хозяйство 
    3. Сфера обслуживания 
    4. Сфера интеллектульного труда
    40 
    34 
    16 
    24

    29 

    5

    13 
    15 
    9
    39 
    12 
    19 
    72
    91 
    88 
    56 
    110
    Всего
    114
    45
    44
    142
    345

    Распределение частот по строкам и столбцам таблицы  взаимной сопряженности позволяет  выявить основные закономерности социальной мобильности: 42,9 % детей родителей  группы 1 («Промышленность и строительство») заняты в сфере интеллектуального  труда (39 из 91); 38,9 % детей. родители которых трудятся в сельском хозяйстве, работают в промышленности (34 из 88) и т.д.

    Можно заметить и явную наследственность в передаче профессий. Так, из пришедших в сельское хозяйство 29 человек, или 64,4 %, являются детьми работников сельского хозяйства; более чем у 50 % в сфере интеллектуального  труда родители относятся к той  же социальной группе и т.д.

    Однако важно  получить обобщающий показатель, характеризующий  тесноту связи между признаками и позволяющий сравнить проявление связи в разных совокупностях. Для  этой цели исчисляют, например, коэффициенты взаимной сопряженности Пирсона (С) и Чупрова (К):

    где f2 – показатель средней квадратической сопряженности, определяемый путем вычитания единицы из суммы отношений квадратов частот каждой клетки корреляционной таблицы к произведению частот соответствующего столбца и строки:

    К1 и К2 – число групп по каждому из признаков. Величина коэффициента взаимной сопряженности, отражающая тесноту связи между качественными признаками, колеблется в обычных для этих показателей пределах от 0 до 1.

    В социально-экономических  исследованиях нередко встречаются  ситуации, когда признак не выражается количественно, однако единицы совокупности можно упорядочить. Такое упорядочение единиц совокупности по значению признака называется ранжированием. Примерами могут быть ранжирование студентов (учеников) по способностям, любой совокупности людей по уровню образования, профессии, по способности к творчеству и т.д.

    При ранжировании каждой единице совокупности присваивается  ранг, т.е. порядковый номер. При совпадении значения признака у различных единиц им присваивается объединенный средний порядковый номер. Например, если у 5-й и 6-й единиц совокупности значения признаков одинаковы, обе получат ранг, равный (5 + 6) / 2 = 5,5.

    Измерение связи  между ранжированными признаками производится с помощью ранговых коэффициентов корреляции Спирмена (r) и Кендэлла (t). Эти методы применимы не только для качественных, но и для количественных показателей, особенно при малом объеме совокупности, так как непараметрические методы ранговой корреляции не связаны ни с какими ограничениями относительно характера распределения призн

10. Выборочный метод        

    статистический  метод исследования общих свойств  совокупности каких-либо объектов на основе изучения свойств лишь части этих объектов, взятых на выборку. Математическая теория В. м. опирается на два важных раздела математической статистики (См. Математическая статистика) — теорию выбора из конечной совокупности и теорию выбора из бесконечной совокупности. Основное отличие В. м. для конечной и бесконечной совокупностей заключается в том, что в первом случае В. м. применяется, как правило, к объектам неслучайной, детерминированной природы (например, число дефектных изделий в данной партии готовой продукции не является случайной величиной (См. Случайная величина): это число — неизвестная постоянная, которую и надлежит оценить по выборочным данным). Во втором случае В. м. обычно применяется для изучения свойств случайных объектов (например, для исследования свойств непрерывно распределённых случайных ошибок измерений, каждое из которых теоретически может быть истолковано как реализация одного из бесконечного множества возможных результатов).        

     Выбор из  конечной совокупности и его  теория являются основой статистических  методов контроля качества и  часто применяются в социологических  исследованиях (см. Выборочное наблюдение). Согласно теории вероятностей, выборка будет правильно отражать свойства всей совокупности, если выбор производится случайно, т. е. так, что любая из возможных выборок заданного объёма n из совокупности объёма N [число таких выборок равно N!/n!(Nn)!] имеет одинаковую вероятность быть фактически выбранной.         

     На практике  наиболее часто используется  выбор без возвращения (бесповторная  выборка), когда каждый отобранный  объект перед выбором следующего  объекта в исследуемую совокупность  не возвращается (такой выбор  применяется при статистическом  контроле качества). Выбор с возвращением (выборка с повторением) рассматривается  обычно лишь в теоретических  исследованиях (примером выбора  с возвращением является регистрация  числа частиц, коснувшихся в течение  данного времени стенок сосуда, внутри которого совершается Броуновское движение). Если n << N, то повторный и бесповторный выборы дают практически эквивалентные результаты.        

Информация о работе Статистика, основные положения