Биотехнология

Автор работы: Пользователь скрыл имя, 20 Марта 2012 в 21:18, курс лекций

Описание

Ферменты генетической инженерии. Конструирование рекомбинантных ДНК. Методы трансформации растительных клеток. Получение трансгенных растений,устойчивых к насекомым, болезням, гербицидам. Улучшение качества и повышение продуктивности растений методами генной инженерии. Белковая инженерия. Клеточная биотехнология в животноводстве. Клонирование животных. Этапы получения трансгенных животных. Создание разных типов трансгенных животных. Направления клеточной биотехнологии. Техника культивирования изолированных клеток и тканей растений.

Работа состоит из  1 файл

Биотехнология.doc

— 433.00 Кб (Скачать документ)

Наиболее продуктивным и чаще всего используемым является метод бомбардировки микрочастицами. При достаточной скорости эти частицы могут непосредственно проникать в ядро, что сильно повышает эффективность трансформации. Этим же методом можно, впрочем, трансформировать и другие ДНК-содержащие клеточные органеллы - хлоропласты и митохондрии.

В последнее время был разработан и успешно применен также комбинированный метод трансформации, названный агролистическим. При этом чужеродная ДНК вводится в ткани каким-либо физическим методом, например, баллистическим. Вводимая ДНК включает как Т-ДНК вектор с целевым и маркерным геном, так и агробактериальные гены вирулентности, поставленные под эукариотический промотор. Временная экспрессия генов вирулентности в растительной клетке приводит к синтезу белков, которые правильно вырезают Т-ДНК из плазмиды и встраивают ее в хозяйский геном, как и при обычной агробактериальной трансформации.

После проведения тем или иным способом трансформации растительной ткани ее помещают in vitro на специальную среду с фитогормонами, способствующую размножению клеток. Среда обычно содержит селективный агент, в отношении которого трансгенные, но не контрольные клетки приобретают устойчивость. Регенерация чаще всего проходит через стадию каллуса, после чего при правильном подборе сред начинается органогенез (побегообразование). Сформированные побеги переносят на среду укоренения, часто также содержащую селективный агент для более строгого отбора трансгенных особей.

Введение ДНК в клетки растений с помощью Ti- и Ri-плазмид

A. tumefaciens вызывает образование опухолей стебля двудольных растений - так называемых корончатых галлов. Бактерии прикрепляются к клетками растения в местах повреждений. Сайтами связывания на поверхности бактерий, видимо, являются молекулы β-глюкана и О-антигенной цепи липополисахарида внешней мембраны.

Бактерии связываются с рецепторами высшего растения, состоящими из белка и пектина; лектины в данном случае не имеют значения. Бактериальные сайты связывания и рецепторы растений являются констуитивными, т.е. оба партнера обладают ими еще до момента взаимодействия. Первый шаг взаимодействия с растением - узнавание - следует рассматривать как специфическую адгезию растений. Как только бактерии прикрепились к поверхности клеток растения, они начинают образовывать целлюлозные фибриллы. К 10 часам инкубации фибриллы формируют сеть, покрывающую поверхность растительных клеток. Фибриллы служат более прочному закреплению бактерий на поверхности хозяина. За целлюлозные фибриллы могут зацепиться свободно плавающие клетки бактерий. Фиксируя их у поверхности растения, фибриллы увеличивают множественность заражения. В результате размножения образуются скопления бактерий на поверхности растения.

Клеточная стенка растения повреждается вследствие выделения бактериями пектолитических ферментов, что обеспечивает плотный контакт бактерий с плазмалеммой растительной клетки. Этот контакт необходим для передачи ДНК от бактерий в растительную клетку. Передача ДНК происходит без нарушения целостности мембраны растительной клетки, но требует определенного её состояния - компетентности.

Способность A. tumefaciens индуцировать у растений образование опухолей типа "корончатого галла" коррелирует с наличием у них Ti-плазмиды. Опухолевая трансформация проявляется в гипертрофии возникающей после проникновения агробактерий в пораненные участки (сайты) растений (рис. 5). Трансформация является результатом стабильного ковалентного включения (инсерции или интеграции) сегмента («transferred» или Т-ДНК) большой плазмиды (pTi - tumor inducing или pRi — root inducing) бактерий в ядерную ДНК растительной клетки.

Другой вид агробактерий – A. rhizogenes, - вызывает заболевание, именуемое "бородатый корень", при котором в зоне повреждения корня образуется масса новых корешков. A. rubi обычно индуцируют неорганизованные опухоли (тератомы), штаммы A. radiobacter авирулентны.

В отличие от большинства тканей взятых из нормальных растений, трансформированные ткани в культуре in vitro в асептических (стерильных) условиях способны неограниченно расти в отсутствие экзогенно добавленных ауксинов и цитокининов. Кроме того, трансформированные ткани часто синтезируют одну или более групп соединений, названных опинами, которые обычно не обнаруживаются в нетрансформированных растительных тканях.

Рис. 5. Генетическая колонизация растения A. tumefaciens: 1- агробактерии существуют в ризосфере; 2 - строение A. tumefaciens; 3 – встраивание Т-ДНК в геном; 4 – образование опухоли

Опухоли, развивающиеся из одной или нескольких клеток, быстро разрастаются в крупные образования, диаметр которых на определенных видах деревьев может достигать одного метра. Типичная неорганизованная опухоль представляет собой более или менее округлую дедифференцированную массу клеток (каллус), которая может иметь гладкую или шероховатую поверхность, быть паренхиматозной или одревесневшей. Иногда на периферии таких опухолей формируются листовидные структуры (тератомы), иногда — придаточные корни. Нередко на зараженных растениях наблюдаются вторичные опухоли, значительно удаленные от первичных. Обычно они обнаруживаются выше первичной опухоли, что предполагает движение бактерий или трансформирующего агента в направлении транспирации.

Распространение Agrobacterium и других фитопатогенных бактерий по межклетникам и ксилеме является хорошо доказанным фактом. Агробактерии могут передвигаться на большие дистанции со значительной скоростью. Очевидно, это не является единственной причиной индукции вторичных опухолей. Организацию опухолей, а именно форму, величину и характер развития, определяют три фактора:

                    штамм агробактерий,

                    генотип растения-хозяина,

                    физиологическое состояние инфицируемых растительных клеток.

Agrobacterium имеет очень широкий круг растений-хозяев и может инфицировать практически все двудольные растения. Долгое время считалось, что однодольные растения не чувствительны к агробактериальной инфекции. В настоящее время показано, что при соблюдении определенных условий агробактерии могут инфицировать однодольные растения, в частности представителей таких семейств, как Amaryllidaceae, Liliaceae, Gramineae, Iridaceae и некоторых других. Однако существуют определенные вариации круга хозяев для различных штаммов Agrobacterium: некоторые штаммы способны вызывать галлообразование на отдельных видах растений, но не инфицируют другие. Различные сорта одного и того же растения также могут иметь различную чувствительность к данному бактериальному штамму.

Невозможность заражения в природе обуславливается отсутствием соответствующих рецепторов, необходимых для взаимодействия с бактериями. Другим фактором, препятствующим инфицированию однодольных агробактериями, возможно, является отсутствие в клетках растений низкомолекулярных индукторов вирулентности Agrobacterium, например ацетосирингона, которые обычно присутствуют в клеточном соке при поранении двудольных растений.

3. Методы трансформации растительных клеток.

Разработаны два метода для введения Ti-плазмидных последовательностей, содержащих нужный ген, в растение.

Первый метод — метод «промежуточных векторов» (коинтегративных векторов) — основан на использовании плазмиды кишечной палочки pBR 322 (рис. 6).

Т-ДНК вырезают из Ti-плазмиды с помощью рестриктаз и встраивают в плазмиду pBR 322 для клонирования в Е. соli. Бактерии, содержащие плазмиду с Т-ДНК, размножают, после чего эту плазмиду выделяют. Затем в клонированную Т-ДНК с использованием рестриктаз встраивают нужный ген. Эту рекомбинантную молекулу, содержащую Т-ДНК со встроенным в нее геном, снова размножают в большом количестве, то есть клонируют в кишечной палочке. Затем с помощью конъюгации вводят в клетки агробактерии, несущие полную Ti-плазмиду.

Между Т-сегментами нативной Ti-плазмиды и промежуточного вектора происходит гомологичная рекомбинация. В результате этого Т-ДНК со встроенным геном включается в нативную Ti-плазмиду, замещая нормальную ДНК. Получаются клетки А. tumefaciens, несущие Ti-плазмиды со встроенными в Т-сегмент нужными генами. Далее их перенос в клетки растения осуществляется обычным способом, характерным для агробактерий.

Второй метод основан на создании системы бинарных (двойных) векторов.

Последние исследования показали, что для заражения и трансформации не нужна целая Ti-плазмида, а достаточны только пограничные области Т-ДНК и один участок Ti-плазмиды, ответственный за вирулентность. Причем эти два участка ДНК не обязательно должны находиться в одной и той же плазмиде. Если клетки агробактерий содержат Ti-плазмиду с сегментом vir и другую плазмиду с Т-ДНК, эти бактерии могут трансформировать клетки растений. При этом Т-ДНК с любыми встроенными в нее генами интегрирует с геномом растения, для этого не нужна гомологичная рекомбинация в бактериальных клетках. Для осуществления экспрессии чужеродных генов, нужен специфический промотор из Т-ДНК, например, промотор нопалинсинтетазы.

 

Рис. 6. Создание коинтегративного вектора на основе Тi-плазмиды: Рр - расщепление рестриктазой

 

Показано, что он функционирует в клетках растений и может быть легко соединен с кодирующей последовательностью чужеродного гена в широко распространенных субклонах Ti-плазмид. Другое преимущество данного промотора заключается в том, что он функционирует в каллусах и в большинстве органов растений. Эффективность трансформации с помощью модифицированной Т-ДНК агробактерий превосходит на сегодняшний день все другие способы переноса генов в растение.

Для введения сконструированных Ti-плазмид в растительную клетку может быть использовано несколько методов. Наиболее простой из них природный способ — это инокуляция сконструированных штаммов в поврежденные (пораненные) области растения.

Другой метод состоит в трансформации протопластов путем кокультивирования их с агробактериями Методика кокультивации может рассматриваться как индукция опухолей в искусственных условиях: вирулентные агробактерии временно совместно культивируются с протопластами. Если агробактерии добавляются к свежевыделенным или однодневным протопластам, не наблюдается ни присоединения бактерий, ни трансформации. Существенным условием для трансформации является наличие вновь образуемых клеточных стенок у 3-дневных протопластов. Это подтверждается применением ингибиторов образования клеточной стенки, которые ингибируют и присоединение бактерий. После периода кокультивации (более суток), в течение которого наступает агрегация протопластов с бактериями, свободные бактерии удаляются повторным отмыванием. Далее растительные клетки культивируются на среде с добавлением гормонов, а через 3—4 недели небольшие колонии высеваются на безгормональную среду. На этой среде выживают только колонии трансформированных клеток.

Трансформация протопластов может быть проведена также кокультивированием их непосредственно с Ti-плазмидами, такие опыты были проведены с протопластами петунии, табака. Очень низкая эффективность включения Т-ДНК в протопласты, наблюдавшаяся в первых экспериментах, была затем увеличена благодаря химической стимуляции (ПЭГ). Из трансформированных клеток были получены трансгенные растения. Преимуществом этого метода является то, что отпадает необходимость в промежуточных векторах.

4. Получение трансгенных растений,устойчивых к насекомым, болезням, гербицидам.

Первые трансгенные растения (растения табака со встроенными генами из микроорганизмов) были получены в 1983 г. Первые успешные полевые испытания трансгенных растений (устойчивые к вирусной инфекции растения табака) были проведены в США уже в 1986 г.

После прохождения всех необходимых тестов на токсичность, аллергенность, мутагенность и т.д. первые трансгенные продукты появились в продаже в США в 1994 г. Это были томаты Flavr Savr с замедленным созреванием, созданные фирмой "Calgen", а также гербицид-устойчивая соя компании "Monsanto". Уже через 1-2 года биотехнологические фирмы поставили на рынок целый ряд генетически измененных растений: томатов, кукурузы, картофеля, табака, сои, рапса, кабачков, редиса, хлопчатника.

Первая волна трансгенных растений, допущенных для практического применения, содержала дополнительные гены устойчивости (к болезням, гербицидам, вредителям, порче при хранении, стрессам).

В новых, интенсивных сельскохозяйственных технологиях гербициды применяются очень широко. Это связано с тем, что на смену прежним экологически опасным гербицидам широкого спектра действия, обладающим токсичностью для млекопитающих и длительно сохраняющимся во внешней среде, приходят новые, более совершенные и безопасные соединения. Однако они обладают недостатком — подавляют рост не только сорняков, но и культурных растений. Такие высокоэффективные гербициды, как, глифосат, атразины интенсивно изучаются на предмет выявления механизма толерантности к ним некоторых сорняков. Так, на полях, где широко используют атразин, довольно часто появляются атразинустойчивые биотипы у многих видов растении.

Изучение механизма устойчивости к гербицидам с целью получения методами генетической инженерии культурных растений, обладающих этим признаком, включает следующие этапы: выявление биохимических мишеней действия гербицидов в растительной клетке: отбор устойчивых к данному гербициду организмов в качестве источников генов устойчивости: клонирование этих генов: введение их в культурные растения и изучение их функционирования

Информация о работе Биотехнология