Биотехнология

Автор работы: Пользователь скрыл имя, 20 Марта 2012 в 21:18, курс лекций

Описание

Ферменты генетической инженерии. Конструирование рекомбинантных ДНК. Методы трансформации растительных клеток. Получение трансгенных растений,устойчивых к насекомым, болезням, гербицидам. Улучшение качества и повышение продуктивности растений методами генной инженерии. Белковая инженерия. Клеточная биотехнология в животноводстве. Клонирование животных. Этапы получения трансгенных животных. Создание разных типов трансгенных животных. Направления клеточной биотехнологии. Техника культивирования изолированных клеток и тканей растений.

Работа состоит из  1 файл

Биотехнология.doc

— 433.00 Кб (Скачать документ)

При культивировании клеток растений на питательных средах из одной многократно делящейся клетки получают большое число генетически однородных клеток - клоны. Можно получить клоны, в клетках которых накапливается в несколько раз больше ценных веществ, чем в выращиваемом обычным способом целом растении. Так получают, например, биомассу женьшеня для нужд парфюмерной и медицинской промышленности.

Разработан метод гибридизации соматических клеток. Этот метод позволяет создать межвидовые гибриды, которые в естественных условиях получить трудно Так были получены гибриды различных видов картофеля, капусты и турнепса.

Благодаря методам клеточной инженерии сроки, необходимые для выведения но вых сортов растении, сокращаются с 10-12 лет при использовании обычных методов селекции до 3-4 лет

Генная инженерия занимается перестройкой генотипов. Например, если пересадить ген человека, обеспечивающий синтез какого-либо фермента или гормона в клетки микроорганизмов, то они будут производить этот фермент или гормон. Так, больным сахарным диабетом нужно постоянно вводить гормон инсулин. В норме он вырабатывается клетками поджелудочной железы. При нарушении функции поджелудочной железы инсулин не вырабатывается или вырабатывается в недостаточной степени Первоначально инсулин получали из поджелудочных желез свиней и коров. В 1982 г. удалось ввести ген человека, ответственный за выработку инсулина, в генотип бактерии - кишечной палочки. Теперь больные диабетом получают не свиной или коровий инсулин, а человеческий, производимый микробиологической промышленностью.

Ученые работают над изменением генотипов злаков. Они вводят в их генотипы специальный ген бактерий, который будет способствовать усвоению азота из атмосферного воздуха. Решение этой проблемы позволило бы сократить затраты средств на производство азотных удобрений.

Перенос генов используется и при выведении новых сортов декоративных растений. Так, в генотип петунии был перенесен ген, нарушающий образование пигмента в лепестках. Таким путем была создана петуния с белыми цветками.

Современная биотехнология порождает новые проблемы, например возможность появления микроорганизмов с непредсказуемыми свойствами, возбудителями страшных заболеваний. В связи с этим были приняты меры по ограничению применения генной инженерии и предотвращению распространения микроорганизмов в окружающей среде.

Методики культивирования одиночных растительных клеток.

Отдельные клетки культивируют для получения клонов, изучения их генетической и физиологической изменчивости или стабильности. Кроме того, культивирование отдельных клеток позволяет изучать условия, определяющие возникновение стимулов к делению у клеток, изолированных от влияния других клеток популяции или ткани. Отдельные клетки также важны для клоновой селекции мутантных, гибридных и трансформированных линий. Обычно в такие клетки вводят маркерные гены, которые позволяют осуществлять селекцию.

Кроме того, отдельные клетки могут служить моделью для сравнительного изучения физиологических процессов в ткани и изолированной клетке. Например, для изучения фотодыхания можно сравнивать процесс фотосинтеза на уровне отдельных клеток мезофилла листа и целой ткани.

Выращивание изолированных клеток складывается из двух этапов: 1) изолирование неповрежденной клетки растительной или каллусной ткани; 2) создание условий, благоприятных для роста и развития изолированной клетки.

На первом этапе необходимо выделить неповрежденную и жизнеспособную клетку из ткани целого растения или каллусной ткани. Этого можно достичь путем обработки ткани пектиназами, что ведет к мацерации ее клеток. Однако не всегда после такой обработки клетки сохраняют способность к последующим делениям и образованию ткани. Лучше получать отдельные клетки из суспензионных культур или рыхлого каллуса. Идеальными отдельными клетками являются протопласты, образовавшие клеточную стенку.

Далее клетки изолируют либо при помощи микроманипуляторов, либо путем ряда последовательных разведений. При первых же попытках культивирования отдельных клеток возникла важная научная проблема: как заставить делиться клетки, изолированные от влияния других клеток популяции или тканей? Отдельные клетки вели себя иначе, чем их скопления в виде агрегатов в суспензии или каллусной массы на поверхности питательной среды.

При ее решении возникла гипотеза о «факторе кондиционирования». Так было названо вещество, стимулирующее деление отдельных клеток. Определено, что этот фактор имеет химическую природу, термолабилен, водорастворим, низкомолекулярен (М.К. Павлова, Р.Г. Бутенко, 1965), видонеспецифичен, не заменяет известные фитогормоны, синергичен с брассиностероидами. Было предложено несколько вариантов культивирования отдельных клеток.

Впервые подобрать условия, подходящие для деления отдельных клеток, удалось в 1954 году Мьюиру, Хильденбранту и Райкеру. Этот способ получил название метода «ткани – няньки» (рис. 7).

Рис. 7. Схема использования каллуса в качестве «ткани - няньки»

 Клетку изолируют при помощи микроманипулятора из рыхлого каллуса непосредственно на кусочек фильтра размером 8 * 8 мм, помещенный на верхушку каллусной ткани, из которой была взята клетка. Каллус должен находится в фазе активного роста. Можно также в качестве «няньки» использовать каллусную ткань другого растения родственного вида. В этом случае клетки растут и делятся. По мере старения каллуса – няньки фильтр с клетками переносится на молодой каллус. Когда ткань из клетки достигает размеров 0,5 – 1 мм, то ее можно высаживать непосредственно на питательную среду.

Проводились также эксперименты по высаживанию клетки непосредственно на агаризованную среду, но обязательно рядом с фильтром, который в течение нескольких дней контактировал с молодой, интенсивно растущей каллусной тканью. Поскольку эти работы показали, что постоянный контакт клетки через фильтр с каллусной массой не является обязательным для деления клетки, то было предложено использовать старую культуральную среду для стимуляции одиночной клетки к делению.

 Можно также использовать метод «кормящего слоя». Для этого берут суспензию клеток того же вида, что и одиночная клетка, или близкого вида. Клеточная суспензия должна находиться в ранней экспоненциальной фазе ростового цикла. В 1959 году Бергман предложил фильтровать суспензионную культуру (в его экспериментах это были табак и фасоль) стерильно через один слой батиста (ячейки 0,3 * 0,1 мм). В результате получали суспензию, на 90% состоящую из отдельных клеток. Эту суспензию смешивали с агаризованной питательной средой того же состава, что использовался при культивировании суспензии (среда содержала 0,6% агара). Смесь разливали тонким слоем (1 мм) в чашки Петри. Агар разделял клетки, но не препятствовал обмену химическими сигналами между ними, а толщина слоя позволяла смотреть за их поведением под микроскопом.

Индукция делений отдельных клеток возможна при применении очень богатой питательной среды, например, среды Као и Михайлюка. При этом объем среды, в которую помещаются клетки, должен был минимальным (микрокапли объемом до 20 мкл).

Все эти способы культивирования позволяют клетке «ощущать» фактор кондиционирования. Он либо вырабатывается в достаточном количестве клетками «кормящего слоя», «ткани – няньки», либо содержится в суспензии, где ранее культивировались клетки, либо не теряется в большом объеме среды. Таким образом, фактор, вызывающий деление клеток, вырабатывается самими клетками, но в небольшом количестве. И только увеличивая число клеток, вырабатывающих этот фактор, чтобы он не рассеивался в больших объемах питательной среды, или же уменьшая объем среды, в котором будет выращиваться клетка, можно заставить ее делиться.

9. Культура клеточных суспензий. Морфогенез в каллусных тканях.

Суспензионные культуры - отдельные клетки или группы клеток, выращиваемые во взвешенном состоянии в жидкой среде. Представляют собой относительно гомогенную популяцию клеток, которую легко подвергнуть воздействию химических веществ.

Суспензионные культуры широко используются в качестве модельных систем для изучения путей вторичного метаболизма, индукции ферментов и экспрессии генов, деградации чужеродных соединений, цитологических исследований и др.

Признаком "хорошей" линии служит способность клеток к перестройке метаболизма и высокая скорость размножения в конкретных условиях культивирования. Морфологические характеристики такой линии:

                    высокая степень дезагрегации (5-10 клеток в группе);

                    морфологическая выравненность клеток (небольшие размеры, сферическая или овальная форма, плотная цитоплазма);

                    отсутствие трахеидоподобных элементов.

Клеточную суспензию получают, помещая каллусную ткань в колбу с жидкой питательной средой. Суспензия перемешивается в колбе на качалке, имеющей скорость перемешивания 100 - 120 об/мин. При первом переносе на свежую среду удаляют крупные кусочки исходного каллуса и крупные агрегаты, фильтруя через 1 - 2 слоя марли, нейлоновые сита, шприц с соответствующим отверстием. Для инициализации суспензионной культуры необходимо 2 - 3 г свежей массы каллусной культуры на 60 - 100 мл жидкой питательной среды. Однако для каждой линии культуры клеток существует минимальный объем инокулята, при меньшем размере которого культура не растет.

Рост суспензионных культур клеток можно оценивать по одному или нескольким следующим параметрам:

1. Объем осажденных клеток (ООК). Переносят небольшой объем суспензионной культуры в мерную пробирку объемом 15 мл, лучше всего коническую. Центрифугируют 5 минут при 200 g. ООК - величина, которую составляет объем осадка от объема суспензии, обычно в %.

2. Число клеток. Подсчитывается в камере Фукса-Розенталя.

3. Сырая и сухая масса. Суспензия клеток фильтруется через смоченный и взвешенный фильтр, вложенный в воронку Бюхнера под слабым вакуумом. Клетки промывают дистиллированной водой, оттягивают воду под вакуумом и взвешивают снова вместе с фильтром. Сухая масса – определяется аналогично, но взвешивается сухой фильтр, а клетки сушат вместе с фильтром в термостате при 60оС до постоянной массы.

4. Содержание белка. Для определения белка клетки собирают на фильтре из стекловолокна, дважды промывают кипящим раствором 70% этанола, сушат ацетоном, гидролизуют 1М NaOH при температуре 85оС полтора часа. Затем фильтруют и определяют белок по Лоури.

5. Проводимость среды. Определяют с помощью кондуктометра. Как правило, она обратно пропорциональна свежей массе клеток.

6. Жизнеспособность клеток. Оценивают, изучая движение цитоплазмы под микроскопом, а также с помощью прижизненных красителей (флюоресцеиндиацетат, соли тетразолия, синий Эванса). Перед использованием подбирают рН инкубационного буфера, концентрацию красителя, время инкубации, строят калибровочные кривые для смеси живых и убитых клеток.

По полученным данным строят ростовые кривые, которые имеют S-образную форму и состоят из нескольких участков.

Для глубинного культивирования растительных клеток применимы способы, разработанные в микробиологии. Различают два вида систем культивирования: открытую и закрытую.

Для закрытой системы характерен периодический режим выращивания. Клеточная масса (инокулят) помещается в определенный объем среды. Система закрыта по всем параметрам, кроме газов, до конца выращивания. Периодически подается свежая питательная среда, а старая удаляется в том же объеме. Клетки остаются в системе в течение всего цикла выращивания.

Открытые (проточные) культуры характеризуются поступлением свежей питательной среды, при котором отбирается не только старая питательная среда, но и часть урожая клеточной массы.

Наиболее изучено и распространено закрытое глубинное культивирование. Для аэрации и перешивания используют различную аппаратуру: роллеры, качалки, магнитные мешалки и т.д. Очень большое значение для роста и биосинтеза клеток in vitro имеют технические характеристики систем культивирования. При масштабировании от небольших по объему культур в колбах до больших многолитровых ферментеров меняются многие параметры культивирования, в частности аэрация и перемешиваемость.

Для культивирования суспензий в производственных масштабах применяется аппаратура, разработанная для микробиологической промышленности, однако исследования последних лет показали, что растительные клетки в силу своих специфических особенностей требуют особых сосудов для культивирования. Клетки растений в десятки, сотни раз крупнее клеток бактерий и грибов, кроме того, их размеры меняются в процессе онтогенеза. Если в начале экспоненциальной фазы роста они мелкие и плотные, то в стационарной фазе роста они сильно увеличиваются в размерах и вакуолизируются. Чем крупнее становится клетка, тем больше возрастает опасность ее механического повреждения в процессе перемешивания. В то же время клетки растений, крупные и тяжелые, требуют эффективного перемешивания. Оседание их приводит к появлению «мертвых» зон в сосудах, в которых происходит быстрое накопление и старение клеток. Для культуры клеток женьшеня отрицательное влияние механического стресса при выращивании в ферментере с турбинными мешалками сказывалось на жизнеспособности клеток уже при скоростях мешалок свыше 100—350 об/мин, это отрицательно влияло на синтез ими антрахинонов. Устойчивость штамма к механическому стрессу является важным требованием к культуре и трудной задачей для исследователей.

Мягкое перемешивание и аэрацию обеспечивает пневматический способ перемешивания потоком сжатого стерильного воздуха, подаваемого в ферментер с восходящим током воздуха. К сожалению, и этот способ имеет свой недостаток, потому что в культуральной среде возникает избыток воздуха, приводящий к кислородному голоданию. От концентрации кислорода в среде зависят рост и вторичный метаболизм клеток. В микробиологических системах изучена взаимозависимость роста биомассы, выхода искомого продукта и снабжения кислородом. Для растений таких данных нет.

Информация о работе Биотехнология