Белки .Нуклеиновые кислоты

Автор работы: Пользователь скрыл имя, 13 Декабря 2011 в 02:43, реферат

Описание

Высокомол. прир. полимеры, построенные из остатков аминокислот, соединенных амидной (пептидной) связью —СО—NH—. Каждый белок характеризуется специфич. аминокислотной последовательностью и индивидуальной пространств, структурой (конформацией). На долю белков приходится не менее 50% сухой массы орг. соед. животной клетки. Функционирование белков лежит в основе важнейших процессов жизнедеятельности организма. Обмен в-в (пищеварение, дыхание и др.), мышечное сокращение, нервная проводимость и жизнь клетки в целом неразрывно связаны с активностью ферментов - высокоспецифич. катализаторов биохим. р-ций, являющихся белками. Основу костной и соединительной тканей, шерсти, роговых образований составляют структурные белки (см., напр., Коллаген). Они же формируют остов клеточных органелл (митохон

Содержание

1.Белки……………………………………………………………………………3
а) Строение белковых молекул…………………………………………………6
б) Свойства ……………………………………………………………………...10

2. Нуклеиновые кислоты………………………………………………………..11
3. Вывод…………………………………………………………………………..18
4. Список литературы………

Работа состоит из  1 файл

БЕЛКИ.doc

— 524.00 Кб (Скачать документ)

Содержание 
 

1.Белки……………………………………………………………………………3 

а) Строение белковых молекул…………………………………………………6

б) Свойства ……………………………………………………………………...10

 

2. Нуклеиновые  кислоты………………………………………………………..11 

3. Вывод…………………………………………………………………………..18 

4. Список литературы……………………………………………………………19 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

БЕЛКИ 

Высокомол. прир. полимеры, построенные из остатков аминокислот, соединенных амидной (пептидной) связью —СО—NH—. Каждый белок характеризуется специфич. аминокислотной последовательностью и индивидуальной пространств, структурой (конформацией). На долю белков приходится не менее 50% сухой массы орг. соед. животной клетки. Функционирование белков лежит в основе важнейших процессов жизнедеятельности организма. Обмен в-в (пищеварение, дыхание и др.), мышечное сокращение, нервная проводимость и жизнь клетки в целом неразрывно связаны с активностью ферментов - высокоспецифич. катализаторов биохим. р-ций, являющихся белками. Основу костной и соединительной тканей, шерсти, роговых образований составляют структурные белки (см., напр., Коллаген). Они же формируют остов клеточных органелл (митохондрий, мембран и др.). Расхождение хромосом при делении клетки, движение жгутиков, работа мышц животных и человека осуществляются по единому механизму при посредстве белков сократительной системы (см., напр., Актин, Миозин). Важную группу составляют регуляторные белки, контролирующие биосинтез белков и нуклеиновых к-т. К регуляторным белкам относятся также пептидно-белковые гормоны, к-рые секретируются эндокринными железами. Информация о состоянии внеш. среды, разл. регуляторные сигналы (в т. ч. гормональные) воспринимаются клеткой с помощью спец. рецепторных белков, располагающихся на наружной пов-сти плазматич. мембраны. Эти белки играют важную роль в передаче нервного возбуждения и в ориентированном движении клетки (хемотаксисе). В активном транспорте ионов, липидов, Сахаров и аминокислот через биол. мембраны участвуют транспортные белки, или белки-переносчики. К последним относятся также гемоглобин и миоглобин, осуществляющие перенос кислорода. Преобразование и утилизация энергии, поступающей в организм с питанием, а также энергии солнечного излучения происходят при участии белков биоэнергетич. системы (напр., родопсин, цитохромы). Большое значение имеют пищевые и запасные белки (см., напр., Казеин, Проламины), играющие важную роль в развитии и функционировании организмов. Защитные системы высших организмов формируются защитными белками, к к-рым относятся иммуноглобулины (ответственны за иммунитет), белки комплемента (ответственны за лизис чужеродных клеток и активацию иммунологич. ф-ции), белки системы свертывания крови (см., напр., Тромбин, Фибрин) и противовирусный белок интерферон.

По составу  белки делят на простые, состоящие  только из аминокислотных остатков, и  сложные. Сложные могут включать ионы металла (металлопротеиды) или пигмент (хромопротеиды), образовывать прочные комплексы с липидами (липопротеины), нуклеиновыми к-тами (нуклеопротеиды), а также ковалентно связывать остаток фосфорной к-ты (фосфопротеиды), углевода (гликопротеины)или нуклеиновой к-ты (геномы нек-рых вирусов). В соответствии с формой молекул белки подразделяют на глобулярные и фибриллярные. Молекулы первых свернуты в компактные глобулы сферич. или эллипсоидной формы, молекулы вторых образуют длинные волокна (фибриллы) и высокоасимметричны. Большинство глобулярных белков, в отличие от фибриллярных, растворимы в воде. Особую группу составляют мембранные (амфипатические) белки, характеризующиеся неравномерным распределением гидрофильных и гидрофобных (липофильных) участков в молекуле: погруженная в биол. мембрану часть глобулы состоит преим. из липофильных аминокислотных остатков, а выступающая из мембраны - из гидрофильных.

Историческая  справка. Первые работы по выделению  и изучению белковых препаратов были выполнены еще в 18 в., однако в  тот период исследования белков носили описательный характер. В нач. 19 в. были сделаны первые анализы элементного состава белков (Ж. Л. Гей-Люссак, Л. Ж. Тенар, 1810), положившие начало систематич. аналит. исследованиям, в результате к-рых было установлено, что все белковые в-ва близки не только по внеш. признакам и св-вам, но и по элементному составу. Важное следствие этих работ - создание первой теории строения белковых в-в (Г.Я. Мульдер, 1836), согласно к-рой все белки содержат общий гипотетич. радикал - "протеин", имеющий эмпирич. ф-лу C40H62N10O12 и связанный в разл. пропорциях с атомами серы и фосфора. Получив вначале всеобщее признание, эта теория привлекла интерес к аналит. исследованиям белков, совершенствованию препаративных методов белковой химии. В этот период были разработаны простейшие приемы выделения белков путем экстракции р-рами нейтральных солей и осаждения, получены первые кристаллич. белки (гемоглобин, нек-рые растит. белки), для анализа белков стали использовать кислотный и щелочной гидролиз.

Создание теории протеина совпало по времени с формированием представлений о функции белков в организме. В 1835 Й.Я. Бёрцедиус высказал идею о важнейшей ф-ции белков - биокаталитической. Вскоре были открыты первые протеолитич. ферменты - пепсин (Т. Шмнн._1836) и трипсин (Л. Корвизар, 1856). Открытие протеаз стимулировало интерес биохимиков к физиологии пищеварения, а следовательно, и к продуктам переваривания белков. К сер. 19 в. было показано, что под действием протеолитич. ферментов белки распадаются на близкие по св-вам фрагменты, получившие назв. пептонов (К. Леман, 1850).

Важное  событие в изучении белков - выделение из белкового гидролизата аминокислоты глицина (А. Браконно, 1820). К кон. 19 в. было изучено большинство аминокислот, входящих в состав белков, синтезирован аланин (А. Штреккер, 1850). В 1894 А. Косеелъ высказал идею о том, что осн. структурными элементами белков являются аминокислоты.

В нач. 20 в. значит. вклад в изучение белков был внесен Э. Фишером, .впервые применившим для этого методы орг. химии. Путем встречного синтеза Э. Фишер доказал, что белки построены из остатков аминокислот, связанных амидной (пептидной) связью. Он также выполнил первые аминокислотные анализы белков, дал правильное объяснение протеолизу.

В 20-40-е  гг. получили развитие физ.-хим. методы анализа белков. Седиментационными и диффузионными методами были определены мол. массы многих белков, получены данные о сферич. форме молекул глобулярных белков (Т. Сведберг, 1926), выполнены первые рентгеноструктурные анализы аминокислот и пептидов (Дж. Д. Бернал, 1931), разработаны хроматографич. методы анализа (А. Мартин, Р. Синг, 1944). Существенно расширились представления о функциональной роли белков: был выделен первый белковый гормон - инсулин (Ф. Бантинг, Ч. Г. Бест, 1922), антитела были идентифицированы как фракция глобулинов (1939) и тем самым обнаружена новая ф-ция белков - защитная. Важным этапом явилось открытие ферментативной ф-ции мышечного миозина (В. А. Энгельгардт, М.Н.Любимова, 1939) и получение первых кристаллич. ферментов (уреазы-Дж.Б. Салшер, 1926; пепсина - Дж.X. Нортроп, 1929; лизоцима - Э. П. Абрахам, Р. Робинсон, 1937).

В нач. 50-х гг. была выдвинута идея о трех уровнях организации белковых молекул (К. У. Линдерстрём-Ланг, 1952) - первичной, вторичной и третичной структурах. Определены первичные структуры инсулина (Ф. Сенгер, 1953) и рибонуклеазы (К. Анфинсен, С. Мур, К. Хёрс, У. Стайн, 1960). По данным рентгеноструктурного анализа были построены трехмерные модели миоглобина (Дж. Кендрю, 1958) и гемоглобина (М, Перуц, 1958) и, т. обр., доказано существование в белках вторичной и третичной структур, в т. ч. спирали, предсказанной Л. Допингом и Р. Кори в 1949-51.

В 60-е  гг. в химии белков интенсивно развивалось синтетич. направление: были синтезированы инсулин (X. Цан, 1963, П. Кадоянис, 1964, Ю. Ван и др., 1965) и рибонуклеаза А (Б. Меррифидд, 1969). Дальнейшее развитие получили аналит. методы: стал широко использоваться автоматич. аминокислотный анализатор, созданный С. Муром и У. Стайном в 1958, существенно модифицированы хроматографич. методы, до высокой степени совершенства доведен рентгеноструктурный анализ, сконструирован автоматич. прибор для определения последовательности аминокислотных остатков в белках - секвенатор (П. Эдман, Г. Бэгг, 1967). Благодаря созданию прочной методич. базы стало возможным проводить широкие исследования аминокислотной последовательности белков. В эти годы была определена структура неск. сотен сравнительно небольших белков (до 300 аминокислотных остатков в одной цепи), полученных из самых разл. источников как животного, так и растит., бактериального, вирусного и др. происхождения. Среди них — протеолитич. ферменты (трипсин, химотрипсин, субтилизин, карбоксипептидазы), миоглобины, гемоглобины, цитохромы, лизоцимы, иммуноглобулины, гистоны, нейротоксины, белки оболочек вирусов, белково-пептидные гормоны и др. В результате были созданы предпосылки для решения актуальных проблем энзимологии, иммунологии, эндокринологии и др. областей физ.-хим. биологии.

В 70-80-е  гг. наиб. прогресс был достигнут  при изучении белков - регуляторов матричного синтеза биополимеров (в т.ч. белков рибосом), сократительных, транспортных и защитных белков, ряда мембранных белков (в т. ч. белков биоэнергетич. систем), рецепторных белков. Большое внимание уделялось дальнейшему совершенствованию методов анализа белков. Значительно повышена чувствительность автоматич. анализа аминокислотной последовательности белков (Б. Витман-Либольд, Л. Худ). Широкое применение нашли новые методы разделения белков и пептидов (жидкостная хроматография высокого давления, биоспецифич. хроматография). В связи с разработкой эффективных методов анализа нуклеотидной последовательности ДНК (А. Максам и У. Гилберт, Ф. Сенгер) стало возможным использовать полученную при таком анализе информацию и при определении первичной структуры белков. В результате установлена структура ряда белков, доступных в ничтожно малых кол-вах (интерферон, ацетилхолиновый рецептор), а также белков большой мол. массы (фактор элонгации G, гликогенфосфорилаза, галактозидаза, коллаген, и субъединицы РНК-полимеразы, содержащие соотв. 701, 841, 1021, 1028, 1342 и 1407 аминокислотных остатков). Успехи структурного анализа позволили вплотную приступить к определению пространств, организации и молекулярных механизмов функционирования надмолекулярных комплексов, в т.ч. рибосом, хроматина (нуклеосом), митохондрий, фагов и вирусов. Существ, результаты получены в эти годы советскими учеными: определена первичная структура аспартатаминотрансферазы (1972), бактериородопсина (1978), животного родопсина (1982), нек-рых рибосомальных белков, фактора элонгации G (1982), важнейшего фермента-РНК-полимеразы (1976-82), нейротоксинов и др.

Информация о работе Белки .Нуклеиновые кислоты