Методы экспертных оценок

Автор работы: Пользователь скрыл имя, 24 Февраля 2012 в 08:44, курсовая работа

Описание

Современная экономика предъявляет новые, более высокие требования к управлению. Вопросы совершенствования методов управления приобретают сейчас очень важное значение, поскольку именно в этой сфере имеются еще большие резервы роста эффективности народного хозяйства.

Содержание

Глава 1. ЭКСПЕРТИЗА В УПРАВЛЕНИИ 5
1.1. Роль экспертов в управлении 5
1.2. Метод экспертных оценок 7
1.3. Организация экспертного оценивания 9
1.4. Подбор экспертов 9
1.5. Опрос экспертов 10
Глава 2. ФОРМАЛИЗАЦИЯ ИНФРОРМАЦИИ
И ШКАЛЫ СРАВНЕНИЙ 12
Глава 3. ОБРАБОТКА ЭКСПЕРТНЫХ ОЦЕНОК 16
3.1. Задачи обработки 16
3.2. Групповая оценка объектов 17
3.3. Оценка согласованности мнений экспертов 22
3.4. Обработка парных сравнений объектов 25
3.5. Определение взаимосвязи ранжировок 27
Заключение 31
Список литературы

Работа состоит из  1 файл

Методы экспертных оценок.doc

— 1.09 Мб (Скачать документ)

Коэффициенты компетентности экспертов можно вы­числить по апостериорным данным, т. е. по результатам оценки объектов. Основной идеей этого вычисления яв­ляется предположение о том, что компетентность экспер­тов должна оцениваться по степени согласованности их оценок с групповой оценкой объектов.

Алгоритм вычисления коэффициентов компетентно­сти экспертов имеет вид рекуррентной процедуры [12]:

                                                                                                   (5.4)

                                                                                                   (5.5)

                                                                                (5.6)

Вычисления начинаются с t=1. В формуле (5.4) началь­ные значения коэффициентов компетентности принима­ются одинаковыми и равными  Тогда по фор­муле (5.4) групповые оценки объектов первого приближе­ния равны средним арифметическим значениям оценок экспертов [12]

                                                                                                         (5.7)

Далее вычисляется величина  по формуле (5.5) [12]:

                                                                                                                    (5.8)

и значение коэффициентов компетентности первого при­ближения по формуле (5.6) [12]:

                                                                                                                   (5.9)

Используя коэффициенты компетентности первого приближения, можно повторить весь процесс вычисле­ния по формулам (5.4), (5.5), (5.6) и получить вторые приближения величин

Повторение рекуррентной процедуры вычислений оце­нок объектов и коэффициентов компетентности естест­венно ставит вопрос о ее сходимости. Для рассмотрения этого вопроса исключим из уравнений (5.4), (5.6) пере­менные  и  и представим эти уравнения в вектор­ной форме [12]

                                                                              (5.10)

где матрицы  В  размерности  и С  размерности  равны [12]

                                                                                               (5.11)

Величина  в уравнениях (5.10) определяется по фор­муле (5.5).

Если матрицы  В и С неотрицательны и неразложи­мы, то, как это следует из теоремы Перрона – Фробениуса, при  векторы  и  - сходятся к собственным векторам матриц В и С, соответствующим макси­мальным собственным числам этих матриц [12]

                                                                                                          (5.12)

Предельные значения векторов х и k можно вычислить из уравнений [12]:

                                                                                      (5.13)

где  максимальные собственные числа матриц  В  и С.

Условие неотрицательности матриц  В  и С легко вы­полняется выбором неотрицательных элементов  мат­рицы Х оценок объектов экспертами.

Условие неразложимости матриц В и С практически выполняется, поскольку, если эти матрицы разложимы, то это означает, что эксперты и объекты распадаются на независимые группы. При этом каждая группа экс­пертов оценивает только объекты своей группы. Естест­венно, что получать групповую оценку в этом случае нет смысла. Таким образом, условия неотрицательности и неразложимости матриц  В  и С, а следовательно, и условия сходимости процедур (5.4), (5.5), (5.6) в практи­ческих условиях выполняются.

Следует заметить, что практическое вычисление век­торов групповой оценки объектов и коэффициентов ком­петентности проще выполнять по рекуррентным форму­лам (5.4), (5.5), (5.6). Определение предельных значе­ний этих векторов по уравнению (5.13) требует примене­ния вычислительной техники.

Рассмотрим теперь случай, когда эксперты произво­дят оценку множества объектов методом ранжирования так, что величины  есть ранги. Обработка результа­тов ранжирования заключается в построении обобщен­ной ранжировки. Для построения такой ранжировки введем конечномерное дискретное пространство ранжи­ровок и метрику в этом пространстве. Каждая ранжи­ровка множества объектов j-м экспертом есть точка  в пространстве ранжировок.

Ранжировку  можно представить в виде матрицы парных сравнений, элементы которой определим следу­ющим образом [12]:

Очевидно, что , поскольку каждый объект эквива­лентен самому себе. Элементы матрицы  антисим­метричны .

Если все ранжируемые объекты эквивалентны, то все элементы матрицы парных сравнений равны нулю. Та­кую матрицу будем обозначать  и считать, что точка в пространстве ранжировок, соответствующая матрице , является началом отсчета.

Обращение порядка ранжируемых объектов приводит к транспонированию матрицы парных сравнений.

Метрика  как расстояние между i-й и j-й ранжировками определяется единственным образом фор­мулой [12]

если выполнены следующие 6 аксиом [12]:

   1.  причем равенство достигается, если ранжировки  и  тождественны;

   2.

   3.

причем равенство достигается, если ранжировка «лежит между» ранжировками  и . Понятие «лежит между» означает, что суждение о некоторой паре  объектов в ранжировке совпадает с суждением об этой паре либо в , либо в  или же в   в   а в  

4.

где  получается из  некоторой перестановкой объ­ектов, а  из  той же самой перестановкой. Эта ак­сиома утверждает независимость расстояния от перену­мерации объектов.

5. Если две ранжировки ,  одинаковы всюду, за исключением n-элементного множества элементов, явля­ющегося одновременно сегментом обеих ранжировок, то  можно вычислить, как если бы рассматрива­лась ранжировка только этих n-объектов. Сегментом ранжировки называется множество, дополнение которо­го непусто и все элементы этого дополнения находятся либо впереди, либо позади каждою элемента сегмента. Смысл этой аксиомы состоит в том, что если две ранжи­ровки полностью согласуются в начале и конце сегмента, а отличие состоит в упорядочении средних n-объектов, то естественно принять, что расстояние между ранжиров­ками должно равняться расстоянию, соответствующему ранжировкам средних n-объектов.

 6. Минимальное расстояние равно единице.

Пространство ранжиро­вок при двух объектах можно изобразить в виде трех точек, лежащих на одной прямой. Расстояния между точками равны   При трех объектах про­странство всех возможных ранжировок состоит из 13 то­чек.

Используя введенную метрику, определим обобщен­ную ранжировку как такую точку, которая наилучшим образом согласуется с точками, представляющими собой ранжировки экспертов. Понятие наилучшего согласова­ния на практике чаще всего определяют как медиану и среднюю ранжировку.

Медиана есть такая точка в пространстве ранжиро­вок, сумма расстояний от которой до всех точек - ран­жировок экспертов является минимальной. В соответст­вии с определением медиана вычисляется из условия

Средняя ранжировка есть такая точка, сумма квад­ратов расстояний от которой до всех точек – ранжиро­вок экспертов является минимальной. Средняя ранжи­ровка определяется из условия

Пространство ранжировок конечно и дискретно, по­этому медиана и средняя ранжировка могут быть только какими-либо точками этого пространства. В общем слу­чае медиана и средняя ранжировка могут не совпадать ни с одной из ранжировок экспертов.

Если учитывается компетентность экспертов, то ме­диана и средняя ранжировка определяются из условий [12]:

 

где  -  коэффициенты компетентности экспертов.

Если ранжировка объектов производится по несколь­ким показателям, то определение медианы вначале про­изводится для каждого эксперта по всем показателям, а затем вычисляется медиана по множеству экспертов [12]:

                (j=1,2,…,m);

где  - коэффициенты весов показателей.

Основным недостатком определения обобщенной ран­жировки в виде медианы или средней ранжировки яв­ляется трудоемкость расчетов. Естественный способ отыскания  или   в виде перебора всех точек простран­ства ранжировок неприемлем вследствие очень быстро­го роста равномерности пространства при увеличении количества объектов и, следовательно, роста трудоемко­сти вычислений. Можно свести задачу отыскания  или  к специфической задаче целочисленного программи­рования. Однако это не очень эффективно уменьшает вы­числительные трудности.

Расхождение обобщенных ранжировок при различ­ных критериях возникает при малом числе экспертов и несогласованности их оценок. Если мнения экспертов близки, то обобщенные ранжировки, построенные по критериям медианы и среднего значения, будут совпа­дать.

Сложность вычисления медианы или средней ран­жировки привела к необходимости применения более простых способов построения обобщенной ранжировки.

К числу таких способов относится способ сумм рангов.

Этот способ заключается в ранжировании объектов по величинам сумм рангов, полученных каждым объек­том от всех экспертов. Для матрицы ранжировок  составляются суммы [12]

                    (i=1,2,…,n).

Далее объекты упорядочиваются по цепочке неравенств 

Для учета компетентности экспертов достаточно умножить каждую i-ю ранжировку на коэффициент ком­петентности j-го эксперта  В этом случае вы­числение суммы рангов для i-го объекта производится по следующей формуле [12]:

                (i=1,2,…,n).

Обобщенная ранжировка с учетом компетентности экс­пертов строится на основе упорядочения сумм рангов для всех объектов.

Следует отметить, что построение обобщенной ранжи­ровки по суммам рангов является корректной процеду­рой, если ранги назначаются как места объектов в виде натуральных чисел 1, 2, ..., n. Если назначать ранги произвольным образом, как числа в шкале порядка, то сумма рангов, вообще говоря, не сохраняет условие мо­нотонности преобразования и, следовательно, можно по­лучать различные обобщенные ранжировки при различ­ных отображениях объектов на числовую систему. Нуме­рация мест объектов может быть произведена единст­венным образом с помощью натуральных чисел. Поэтому при хорошей согласованности экспертов построение обобщенной ранжировки по методу сумм рангов дает результаты, согласующиеся с результатами вычисления медианы.

Еще одним более обоснованным в теоретическом от­ношении подходом к построению обобщенной ранжиров­ки является переход от матрицы ранжировок к матрице парных сравнений и вычисление собственного вектора, соответствующего максимальному собственному числу этой матрицы. Упорядочение объектов производится по величине компонент собственного вектора.

3.3. Оценка согласованности мнений экспертов

При ранжировании объектов эксперты обычно расходят­ся во мнениях по решаемой проблеме. В связи с этим возникает необходимость количественной оценки степе­ни согласия экспертов. Получение количественной ме­ры согласованности мнений экспертов позволяет более обоснованно интерпретировать причины в расхождении мнений.

В настоящее время известны две меры согласованно­сти мнений группы экспертов: дисперсионный и энтро­пийный коэффициенты конкордации.

Дисперсионный коэффициент конкордации. Рас­смотрим матрицу результатов ранжировки n объектов группой из m экспертов  (j=1,…,m; i=1,…,n), где  - ранг, присваиваемый j-м экспертом i-му объекту. Составим суммы рангов по каждому столбцу. В резуль­тате получим вектор с компонентами [12]

   (i=1,2,…,n).                                                                                                     (5.14)           

Величины  рассмотрим как реализации случайной величины и найдем оценку дисперсии. Как известно, оп­тимальная по критерию минимума среднего квадрата ошибки оценка дисперсии определяется формулой [12]:

,                                                                                                        (5.15)

где  - оценка математического ожидания, равная

                                                                                                                         (5.16)

Дисперсионный коэффициент конкордации определя­ется как отношение оценки дисперсии (5.15) к макси­мальному значению этой оценки [12]

.                                                                                                                          (5.17)

Коэффициент конкордации изменяется от нуля до еди­ницы, поскольку .

Вычислим максимальное значение оценки дисперсии для случая отсутствия связанных рангов (все объекты различны). Предварительно покажем, что оценка мате­матического ожидания зависит только от числа объек­тов и количества экспертов. Подставляя в (5.16) зна­чение   из (5.14), получаем [12]

Информация о работе Методы экспертных оценок