Методы экспертных оценок

Автор работы: Пользователь скрыл имя, 24 Февраля 2012 в 08:44, курсовая работа

Описание

Современная экономика предъявляет новые, более высокие требования к управлению. Вопросы совершенствования методов управления приобретают сейчас очень важное значение, поскольку именно в этой сфере имеются еще большие резервы роста эффективности народного хозяйства.

Содержание

Глава 1. ЭКСПЕРТИЗА В УПРАВЛЕНИИ 5
1.1. Роль экспертов в управлении 5
1.2. Метод экспертных оценок 7
1.3. Организация экспертного оценивания 9
1.4. Подбор экспертов 9
1.5. Опрос экспертов 10
Глава 2. ФОРМАЛИЗАЦИЯ ИНФРОРМАЦИИ
И ШКАЛЫ СРАВНЕНИЙ 12
Глава 3. ОБРАБОТКА ЭКСПЕРТНЫХ ОЦЕНОК 16
3.1. Задачи обработки 16
3.2. Групповая оценка объектов 17
3.3. Оценка согласованности мнений экспертов 22
3.4. Обработка парных сравнений объектов 25
3.5. Определение взаимосвязи ранжировок 27
Заключение 31
Список литературы

Работа состоит из  1 файл

Методы экспертных оценок.doc

— 1.09 Мб (Скачать документ)
ext-align:justify">При 1=n матрица Х неразложима, т. е. существует толь­ко одно доминирующее множество, совпадающее с ис­ходным множеством объектов. Разложимость матрицы Х означает, что среди экспертов имеются большие раз­ногласия в оценке объектов.

Если матрица Х неразложима, то вычисление коэф­фициентов относительной важности  по­зволяет определить, во сколько раз один объект превос­ходит другой объект по сравниваемым показателям. Вычисление коэффициентов относительной важности объектов позволяет одновременно построить ранжиров­ку объектов. Объекты ранжируются так, что первым объ­ектом считается объект, у которого коэффициент относи­тельной важности наибольший. Полная ранжировка определяется цепочкой неравенств [12]

из которой следует

Если матрица Х является разложимой, то определить коэффициенты относительной важности можно только для каждого множества . Для каждой матрицы  определяется максимальное собственное число и соответ­ствующий этому числу собственный вектор. Компоненты собственного вектора и есть коэффициенты относитель­ной важности объектов, входящих в множество . По этим коэффициентам осуществляется ранжировка объ­ектов данного множества. Общая ранжировка объектов дается соотношением [12]

Таким образом, если матрица Х неразложима, то по результатам парного сравнения объектов возможно как измерение предпочтительности объектов в шкале отно­шений, так и в шкале порядка (ранжирование). Если же матрица Х разложима, то возможно только ранжиро­вание объектов.

Следует отметить, что отношение предпочтения  может быть выражено любым положительным числом С. При этом должно выполняться условие  В частности, можно выбрать С=2 так, что если , то  если  то  и если , то .

3.5. Определение взаимосвязи ранжировок

 

При обработке результатов ранжирования могут возник­нуть задачи определения зависимости между ранжиров­ками двух экспертов, связи между достижением двух различных целей при решении одной и той же совокуп­ности проблем или взаимосвязи между двумя призна­ками.

В этих случаях мерой взаимосвязи может служить коэффициент ранговой корреляции. Характеристикой взаимосвязи множества ранжировок или целей будет яв­ляться матрица коэффициентов ранговой корреляции. Известны коэффициенты ранговой корреляции Спирмена и Кендалла.

Коэффициент ранговой корреляции Спирмена опре­деляется формулой [12]:

                                                                                                                      (5.50)

где  - взаимный корреляционный момент первой и второй ранжировок,   - дисперсии этих ранжиро­вок. По данным двум ранжировкам оценки взаимного корреляционного момента и дисперсии вычисляются по формулам [12]:

                                                                                       (5.51)

                                                           (5.52)

где n – число ранжируемых объектов,   - ранги в первой и второй ранжировках соответственно,   - средние ранги в первой и второй ранжировках. Оценки средних рангов определяются формулами [12]:

                                                                                    (5.53)

Вычислим оценки средних рангов и дисперсий в пред­положении, что в ранжировках отсутствуют связанные ранги, т. е. обе ранжировки дают строгое упорядочение объектов. В этом случае средние ранги (5.53) представ­ляют собой суммы натуральных чисел от единицы до n, поделенные на n. Следовательно, средние ранги для обе­их ранжировок одинаковы и равны [12]

                                                                                            (5.54)

При вычислении оценок дисперсий заметим, что если раскрыть круглые скобки в формулах (5.52), то под зна­ком сумм будут находиться натуральные числа и их квадраты. Две ранжировки могут отличаться друг от друга только перестановкой рангов, но сумма натураль­ных чисел и их квадратов не зависит от порядка (пере­становки) слагаемых. Следовательно, дисперсии (5.52) для двух любых ранжировок (при отсутствии связанных рангов) будут одинаковы и равны [12]

 

 (i=1,2).                                                 (5.55)

Подставляя значение  из (5.51) и   из (5.55) в формулу (5.50), получим оценку коэффициента ранго­вой корреляции Спирмена [12]

                                                                                          (5.56)

Для проведения практических расчетов удобнее поль­зоваться другой формулой для коэффициента корреля­ции Спирмена. Ее можно получить из (5.56), если вос­пользоваться тождеством [12]

                                  (5.57)

В равенстве (5.57) первые две суммы в правой части, как это следует из выражения (5.55), одинаковы и рав­ны [12]

                                                       (5.58)

Подставляя в формулу (5.56) значение суммы из (5.57) и используя равенство (5.58), получаем следу­ющую удобную для расчетов формулу коэффициента ранговой корреляции Спирмена [12]:

                                                                                               (5.59)

Коэффициент корреляции Спирмена изменяется от –1 до +1. Равенство единице достигается, как это сле­дует из формулы (5.59), при одинаковых ранжировках, т. е. когда  Значение  имеет место при про­тивоположных ранжировках (прямая и обратная ран­жировки). При равенстве коэффициента корреляции ну­лю ранжировки считаются линейно независимыми.

Оценка коэффициента корреляции, вычисляемая по формуле (5.59), является случайной величиной. Для определения значимости этой оценки необходимо задать­ся величиной вероятности , принять решение о значи­мости коэффициента корреляции и определить значение порога  по приближенной формуле [12]

                                                                                                         (5.60)

где n – количество объектов,  - функция, обратная функции [12]

для которой имеются таблицы [7]. После вычисления порогового значения оценка коэффициента корреляции считается значимой, если .

Для определения значимости оценки коэффициента Спирмена можно воспользоваться критерием Стьюдента, поскольку величина [12]

                                                                                                                     (5.61)

приближенно распределена по закону Стьюдента с n – 2 степенями свободы.

Если в ранжировках имеются связанные ранги, то коэффициент Спирмена вычисляется по следующей фор­муле [12]:

                                                                                                         (5.62)

где  - оценка коэффициента ранговой корреляции Спирмена, вычисляемая по формуле (5.59), а величины   равны [12]

                                                             (5.63)

В этих формулах  и  - количество различных связан­ных рангов в первой и второй ранжировках соответст­венно.

Коэффициент ранговой корреляции Кендалла при от­сутствии связанных рангов определяется формулой [12]:

где n – количество объектов,  - ранги объектов, sign x – функция, равная [12]

     sign   

Сравнительная оценка коэффициентов ранговой кор­реляции Спирмена и Кендалла показывает, что вычис­ление коэффициентов Спирмена производится по более простой формуле. Кроме того, коэффициент Спирмена дает более точный результат, поскольку он является оп­тимальной по критерию минимума средней квадрата ошибки оценкой коэффициента корреляции.

Отсюда следует, что при практических расчетах кор­реляционной зависимости ранжировок предпочтитель­нее использовать коэффициент ранговой корреляции Спирмена.

 

ЗАКЛЮЧЕНИЕ

 

  Динамизм и новизна современных народнохозяйственных задач, возможность возникновения разнообразных факторов, влияющих на эффективность решений, требуют, чтобы эти решения принимались быстро и в то же время были хорошо обоснованы. Опыт, интуиция, чувство перспективы в сочетании с информацией помогают специалистам точнее выбирать наиболее важные цели и направления развития, находить наилучшие варианты решения сложных научно-технических и социально-экономических задач в условиях, когда нет информации о решении аналогичных проблем в прошлом.

  Использование метода экспертных оценок помогает формализовать процедуры сбора, обобщения и анализа мнений специалистов с целью преобразования их в форму, наиболее удобную для принятия обоснованного решения.

  Но, следует заметить, что метод экспертных оценок не может заменить ни административных, ни плановых решений, он лишь позволяет пополнить информацию, необходимую для подготовки и принятия таких решений. Широкое использование экспертных оценок правомерно только там, где для анализа будущего невозможно применить более точные методы.

  Экспертные методы непрерывно развиваются и совершенствуются. Основные направления этого развития определяются рядом факторов, в числе которых можно указать на стремление расширить области применения, повысить степень использования математических методов и электронно-вычислительной техники, а также изыскать пути устранения выявляющихся недостатков.

  Несмотря на успехи, достигнутые в последние годы в разработке и практическом использовании метода экспертных оценок, имеется ряд проблем и задач, требующих дальнейших методологических исследований и практической проверки. Необходимо совершенствовать систему отбора экспертов, повышение надежности характеристик группового мнения, разработку методов проверки обоснованности оценок, исследование скрытых причин, снижающих достоверность экспертных оценок.

  Однако, уже и сегодня экспертные оценки в сочетании с другими математико-статистическими методами являются важным инструментом совершенствования управления на всех уровнях.

 

СПИСОК ЛИТЕРАТУРЫ:

 

       1. Афанасьев В.Г. Научное управление обществом. М.: Полит­издат, 1968. 183 с.

      2. Беклешев В.К., Завлин П.Н. Нормирование труда в НИИ и КБ. М.: Экономика, 1973. 203 с.

       3. Берж К. Теория графов и ее применения. Изд-во иностр. лит. 1962 196 с.

       4. Бешелев С.Д., Гурвич Ф.Г. Экспертные оценки. М.: Наука, 1973. 246 с.

       5. Бешелев С.Д., Гурвич Ф.Г. Экспертные оценки в при­нятии плановых решений. М.: Экономика, 1976. 287 с.

       6. Бешелев С.Д., Гурвич Ф.Г. Математико-статистические методы экспертных оценок. М.: Статистика, 1980. 263 с.

       7. Вентцель Е.С. Теория вероятностей. М.: Наука, 1969. 368 с.

       8. Волгин Б.А Деловые совещания. М.: Московский рабочий, 1972. 204 с.

       9. Диксон Дж, Проектирование систем: изобретательство, ана­лиз, принятие решений. М.: Мир, 1969. 323 с.

10. Добров Г.М., Ершов Ю.В., Левин Е.И., Смир­нов Л.П. Экспертные оценки в научно-техническом прогнози­ровании. Киев: Наукова думка, 1974. 263 с.

11. Евланов Л.Г. Принятие решений в условиях неопределен­ности. М.: ИУНХ, 1976. 196 с.

12. Евланов Л.Г., Кутузов В.А. Экспертные оценки в управлении. М.: Экономика, 1978. 133 с.

13. Карданская Н. Принятие управленческого решения. М.: ЮНИТИ, 1999. 407 с.

14. Кемени Д., Снелл Д. Кибернетическое моделирование. М.: Советское радио, 1972. 234 с.

15. Кравченко Т.К. Процесс принятия плановых решений. М.: Экономика, 1974. 183 с.

16. Миркин Б.Г. Проблема группового выбора. М.: Наука, 1974. 256 с.                           .    17. Михеев В.И. Социально-психологические аспекты управле­ния. Стиль и методы работы руководителя. М.: Молодая гвар­дия, 1975. 181 с.

18. Пфанцагль И. Теория измерений. М.: Мир, 1976. 278 с.

19. Тихомиров Ю.А. Управленческое решение. М.: Наука, 1996. 278 с.

20. Федоренко Н.П. Оптимизация экономики. М.: Наука, 1977. 236 с.

21. Ямпольский С.М., Лисичкин В.А. Прогнозирование научно-технического прогресса. М.: Экономика, 1974. 302 с.

 



Информация о работе Методы экспертных оценок