Методы экспертных оценок

Автор работы: Пользователь скрыл имя, 24 Февраля 2012 в 08:44, курсовая работа

Описание

Современная экономика предъявляет новые, более высокие требования к управлению. Вопросы совершенствования методов управления приобретают сейчас очень важное значение, поскольку именно в этой сфере имеются еще большие резервы роста эффективности народного хозяйства.

Содержание

Глава 1. ЭКСПЕРТИЗА В УПРАВЛЕНИИ 5
1.1. Роль экспертов в управлении 5
1.2. Метод экспертных оценок 7
1.3. Организация экспертного оценивания 9
1.4. Подбор экспертов 9
1.5. Опрос экспертов 10
Глава 2. ФОРМАЛИЗАЦИЯ ИНФРОРМАЦИИ
И ШКАЛЫ СРАВНЕНИЙ 12
Глава 3. ОБРАБОТКА ЭКСПЕРТНЫХ ОЦЕНОК 16
3.1. Задачи обработки 16
3.2. Групповая оценка объектов 17
3.3. Оценка согласованности мнений экспертов 22
3.4. Обработка парных сравнений объектов 25
3.5. Определение взаимосвязи ранжировок 27
Заключение 31
Список литературы

Работа состоит из  1 файл

Методы экспертных оценок.doc

— 1.09 Мб (Скачать документ)

                                                                                                                    (5.18)

Рассмотрим вначале суммированные по i при фиксиро­ванном  j. Это есть сумма рангов для j-го эксперта. По­скольку эксперт использует для ранжировки натураль­ные числа от 1 до n, то, как известно, сумма натураль­ных чисел от 1 до n  равна [12]

                                                                                                                 (5.19)

Подставляя (5.19) в (5.18), получаем [12]

                                                                                                  (5.20)

Таким образом, среднее значение зависит только от числа экспертов m и числа объектов n.

Для вычисления максимального значения оценки дис­персии подставим в (5.15) значение  из (5.14) и воз­ведем в квадрат двучлен в круглой скобке. В результате получаем [12]

                                                                       (5.21)

Учитывая, что из (5.18) следует

получаем [12]

                                                                                           (5.22)

Максимальное значение дисперсии достигается при наибольшем значении первого члена в квадратных скоб­ках. Величина этого члена существенно зависит от рас­положения рангов - натуральных чисел в каждой стро­ке i. Пусть, например, все m экспертов дали одинаковую ранжировку для всех n объектов. Тогда в каждой строке матрицы будут расположены одинаковые числа. Следовательно, суммирование рангов в каждой i-u стро­ке дает m-кратное повторение i-ro числа [12]:

Возводя в квадрат и суммируя по i, получаем значение первого члена в (5.22) [12]:

                                                                             (5.23)

Теперь предположим, что эксперты дают несовпадающие ранжировки, например, для случая n=m все эксперты присваивают разные ранги одному объекту. Тогда [12]

     

Сравнивая это выражение с  при m=n, убеждаемся, что первый член в квадратных скобках формулы (9) ра­вен второму члену и, следовательно, оценка дисперсии равна нулю.

Таким образом, случай полного совпадения ранжиро­вок экспертов соответствует максимальному значению оценки дисперсии. Подставляя (5.23) в (5.22) и выпол­няя преобразования, получаем [12]

                                                                                                            (5.24)

Введем обозначение [12]

                                                                                                            (5.25)

Используя (5.25), запишем оценку дисперсии (5.15) в виде [12]

                                                                                                                        (5.26)

Подставляя (5.24), (5.25), (5.26) в (5.17) и сокращая на множитель (n—1), запишем окончательное выражение для коэффициента конкордации [12]

                                                                                                                (5.27)

Данная формула определяет коэффициент конкордации для случая отсутствия связанных рангов.

Если в ранжировках имеются связанные ранги, то максимальное значение дисперсии в знаменателе форму­лы (5.17) становится меньше, чем при отсутствии свя­занных рангов. Можно показать, что при наличии свя­занных рангов коэффициент конкордации вычисляется по формуле [12]:

                                                                                                 (5.28)

где

                                                                                                                 (5.29)

В формуле (5.28)  - показатель связанных рангов в j-й ранжировке,  - число групп равных рангов в j-й ран­жировке,  - число равных рангов в k-й группе связан­ных рангов при ранжировке j-м экспертом. Если совпа­дающих рангов нет, то =0, =0 и, следовательно, =0. В этом случае формула (5.28) совпадает с форму­лой (5.27).

Коэффициент конкордации равен 1, если все ранжи­ровки экспертов одинаковы. Коэффициент конкордации равен нулю, если все ранжировки различны, т. е. со­вершенно нет совпадения.

Коэффициент конкордации, вычисляемый по формуле (5.27) или (5.28), является оценкой истинного значения коэффициента и, следовательно, представляет собой случайную величину. Для определения значимости оценки коэффициента конкордации необходимо знать распреде­ление частот для различных значений числа экспертов m и количества объектов n. Распределение частот для W при  и вычислено в [52]. Для боль­ших значений m и n можно использовать известные ста­тистики. При числе объектов n>7 оценка значимости коэффициента конкордации может быть произведена по критерию . Величина Wm(n—1) имеет  распределе­ние с v=n –1 степенями свободы.

При наличии связанных рангов  распределение с v=n—1 степенями свободы имеет величина [12]:

                                                                                              (5.30)

Энтропийный коэффициент конкордации определяет­ся формулой (коэффициент согласия) [12]:

                                                                                                                    (5.31)

где Н – энтропия, вычисляемая по формуле

                                                                                                        (5.32)

а - максимальное значение энтропии. В формуле для энтропии  - оценки вероятностей j-го ранга, при­сваиваемого i-му объекту. Эти оценки вероятностей вы­числяются в виде отношения количества экспертов , приписавших объекту  ранг j к общему числу экспер­тов [12].

                                                                                                                           (5.33)

Максимальное значение энтропии достигается при равновероятном распределении рангов, т. е. когда . Тогда [12]

                                                                                                                     (5.34)

Подставляя это соотношение в формулу (5.32), получаем [12]

                                                                                              (5.35)

Коэффициент согласия изменяется от нуля до едини­цы. При  расположение объектов по рангам рав­новероятно, поскольку в этом случае . Данный случай может быть обусловлен либо невозможностью ранжировки объектов по сформулированной совокупно­сти показателей, либо полной несогласованностью мне­ний экспертов. При , что достигается при нулевой энтропии (H=0), все эксперты дают одинаковую ранжи­ровку. Действительно, в этом случае для каждого фик­сированного объекта  все эксперты присваивают ему один и тот же ранг j, следовательно, , a   Поэтому и H=0.

Сравнительная оценка дисперсионного и энтропийно­го коэффициентов конкордации показывает, что эти ко­эффициенты дают примерно одинаковую оценку согла­сованности экспертов при близких ранжировках. Одна­ко если, например, вся группа экспертов разделилась в мнениях на две подгруппы, причем ранжировки в этих подгруппах противоположные (прямая и обратная), то дисперсионный коэффициент конкордации будет равен нулю, а энтропийный коэффициент конкордации будет равен 0,7. Таким образом, энтропийный коэффициент конкордации позволяет зафиксировать факт разделения мнений на две противоположные группы. Объем вычис­лений для энтропийного коэффициента конкордации не­сколько больше, чем для дисперсионного коэффициента конкордации.

3.4. Обработка парных сравнений объектов

 

При решении задачи оценки большого числа объектов (ранжирование, определение относительных весов, бал­льная оценка) возникают трудности психологического характера, обусловленные восприятием экспертами мно­жества свойств объектов. Эксперты сравнительно легко решают задачу парного сравнения объектов. Возникает вопрос, каким образом получить оценку всей совокуп­ности объектов на основе результатов парного сравнения, не накладывая условия транзитивности? Рассмотрим алгоритм решения этой задачи. Пусть m экспертов про­изводят оценку всех пар объектов, давая числовую оценку [12]

                                                                                                        (5.36)

Если при оценке пары   экспертов высказались в пользу предпочтения   экспертов высказались наоборот  и  экспертов считают эти объекты равноценными, то оценка математического ожидания случайной величины  равна [12]

                                                                                       (5.37)

Общее количество экспертов равно сумме

                                                                                                              (5.38)

Определяя отсюда  и подставляя его в (5.37), полу­чаем [12]

                                                                                       (5.39)

Очевидно, что  Совокупность величин  образует матрицу  на основе которой можно по­строить ранжировку всех объектов и определить коэф­фициенты относительной важности объектов.

Введем вектор коэффициентов относительной важно­сти объектов порядка t следующей формулой [12]:

                                                                                                    (5.40)

где  - матрица   математических ожиданий оценок пар объектов,  - вектор коэф­фициентов относительной важности объектов порядка t. Величина  равна [12]

                                                                                                               (5.41)

Коэффициенты относительной важности первого по­рядка есть относительные суммы элементов строк мат­рицы X. Действительно, полагая t=1, из (5.40) получаем [12]

                                                                                                    (5.42)

Коэффициенты относительной важности второго по­рядка (t=2} есть относительные суммы элементов строк матрицы X2 [12].

                                                                                          (5.43)

Если матрица Х неотрицательна и неразложима, то при увеличении порядка  величина  сходится к максимальному собственному числу матрицы Х [12]

                                                                                                                        (5.44)

а вектор коэффициентов относительной важности объек­тов стремится к собственному вектору матрицы X, соот­ветствующему максимальному собственному числу

                                                                                                           (5.45)

Определение собственных чисел и собственных век­торов матрицы производится решением алгебраического уравнения [12]

                                                                                                                       (5.46)

где Е—единичная матрица, и системы линейных урав­нений [12]

                                                                                                            (5.47)

где k – собственный вектор матрицы X, соответствующий максимальному собственному числу . Компоненты соб­ственного вектора есть коэффициенты относительной важности объектов, измеренные в шкале отношений.

С практической точки зрения вычисление коэффици­ентов относительной важности объектов проще произво­дить последовательной процедурой по формуле (5.40) при t=1, 2, … Как показывает опыт, 3-4 последователь­ных вычислений достаточно, чтобы получить значения   и k, близкие к предельным значениям, определяемым уравнениями (5.46), (5.47).

Матрица  неотрицательная, поскольку все ее элементы (5.39) неотрицательны. Матрица называется неразложимой, если перестановкой рядов (строк и одно­именных столбцов) ее нельзя привести к треугольному виду [12]

                                                                                                  (5.48)

где  - неразложимые подматрицы матрицы X. Пред­ставление матрицы Х в виде (5.48) означает разбиение объектов на l доминирующих множеств [12]

                                                                                                        (5.49)

Информация о работе Методы экспертных оценок