Автор работы: Пользователь скрыл имя, 17 Декабря 2012 в 22:48, курсовая работа
Предметом рассмотрения в данной курсовой работе является некоторая совокупность проектов по развитию дорожноремонтной организации. Необходимо принять решение о реализации всех или некоторых из этих проектов. Та совокупность проектов, которая будет отобрана, для реализации называется инвестиционной программой.
Введение 4
I. Определение перечня инвестиционных проектов
по развитию предприятия и расчет показателей их эффективности 5
1.1 Общие требования и принципы управления
состоянием автомобильных дорог 5
1.2. Основные задачи и функции дорожно-ремонтной организации 7
1.3. Формы организации дорожной службы 8
II.Оптимизация инвестиционной программы предприятия
с использованием программы Microsoft Excel «Поиск решения» 13
2.1. Формирование математической модели задачи 14
2.2. Поиск решения математической модели задачи 16
III.Определение финансовой реализуемости
и коммерческой эффективности инвестиционного проекта 18
IV.Оценка факторов риска и неопределенности реализации
инвестиционной программы 22
4.1 Анализ чувствительности интегрального эффекта от реализации инвестиционной программы к изменению его основных параметров 23
4.2. Формирование сценариев реализации инвестиционной программы и анализ его устойчивости к их изменениям 26
4.3. Использование метода имитационного моделирования для оценки риска осуществления инвестиционной программы 28
Заключение 31
Список литературы 32
Как видно из таблицы 10 рассматриваемый инвестиционных проект является коммерчески невыгодным для дорожной организации (ЧДД = -20,03; ВНД меньше 15; ИД меньше 1) и финансово-нереализуемым .
IV. Оценка факторов риска и неопределенности реализации
инвестиционной программы
Метод анализа чувствительности показателей эффективности предусматривает оценку степени влияния основных параметров инвестиционного проекта на его результирующие показатели: интегральный эффект, внутреннюю норму доходности и т. д. Проект считается надежным (устойчивым), если изменения его параметров в наиболее вероятных диапазонах изменения не приводят к отрицательным значениям чистого дисконтируемого дохода.
Вычислительная процедура этого метода заключается в поочередном изменении в рамках возможных значений каждого из анализируемых параметров инвестиционного проекта при фиксированных (средних) значениях всех остальных параметров с последующей оценкой влияния каждого из них на величину результирующего показателя.
Метод сценариев в отличие от метода анализа чувствительности предполагает одновременное изменение любой совокупности факторов риска и, таким образом, представляет собой комплексный анализ их виляния на результирующие показатели инвестиционных проектов. Выбор количества факторов риска, принимаемых во внимание в каждом сценарии, так же как и количество самих сценариев, зависит от особенностей проекта и степени детализации учета тех или иных факторов риска. Очевидным является только одно: чем больше таких сценариев, тем больше и вероятность получения достоверной оценки ожидаемого интегрального эффекта от реализации проекта. В настоящее время при сценарном подходе к оценке эффективности дорожных проектов, как правило, целесообразно рассматривать три основных сценария их осуществления: пессимистический, оптимистический и наиболее вероятный (реальный).
Вместе с тем, следует
отметить, что и этот метод не
свободен от существенных недостатков,
главным из которых является достаточно
высокая неопределенность, «размытость»
границ рассматриваемых сценариев,
что обусловлено двумя
Метод имитационного моделирования предусматривает проведение серии расчетных экспериментов с целью проверки устойчивости инвестиционного проекта к изменению основных условий его реализации. Принципиальное отличие этого метода от предыдущего заключается в следующем.
Во-первых, предполагается,
что рассматриваемые параметры
инвестиционного проекта
Во-вторых, в процессе каждого эксперимента оценивается влияние на изучаемый показатель (ЧДД) не отдельно взятого параметра (при неизменных значениях всех остальных), а всей совокупности анализируемых параметров, значения которых генерируются как случайные числа в принятых интервалах их изменения.
4.1.Анализ чувствительности интегрального эффекта от реализации инвестиционной программы
к изменению его основных параметров
Рассчитывается ожидаемая величина интегрального эффекта для наиболее вероятных (средних) условий осуществления этого проекта, которые в данном случае характеризуются заданными его параметрами.
Расчет осуществляется по формуле:
Определяются
где:
σ(Х) - среднее квадратичное отклонение параметра Х,
М(Х) - математическое ожидание (среднее значение) параметра Х.
Значения М(Х) и σ(Х) представлены в таблице 11:
Таблица 11.
М(ЧДД) |
Cо для Ко+К |
СО для кс |
СО для Е |
35,08 |
47 |
0,3 |
0,045 |
Устанавливаются предельные значения случайных отклонений параметров инвестиционного проекта, а также их промежуточные значения между средними и предельными величинами (таблица 12, гр. 1, 3, 5).
Таблица 12.
Ко |
ЧДД |
Кс |
ЧДД |
Е |
ЧДД |
-109,52 |
82,02 |
1,30 |
92,54 |
0,11 |
61,71 |
-132,98 |
58,55 |
1,15 |
63,81 |
0,13 |
47,71 |
-156,45 |
35,08 |
1,00 |
35,08 |
0,15 |
35,08 |
-179,92 |
11,61 |
0,85 |
6,35 |
0,17 |
23,65 |
-203,39 |
-11,85 |
0,70 |
-22,38 |
0,20 |
13,27 |
Для установленных возможных значений каждого из рассматриваемых параметров проекта при фиксированных (средних) значениях всех остальных параметров рассчитываются показатели чистого дисконтированного дохода (таблица 12, гр. 2,4.6).
Рисунок 1. Зависимость ЧДД реализации проекта от изменения его параметров
Из таблицы 9 и рисунка 1 следует, что ЧДД проекта наиболее чувствителен к коэффициенту изменения величины сальдо денежного потока от операционной деятельности. При его снижении на 25% (при неизменных значениях всех остальных параметров) чистый дисконтируемый доход становится отрицательным и убыток составляет 22,38 млн. руб. В меньшей степени оказывает влияние на интегральный доход изменение нормы дисконтирования, которое в случае увеличения на 25% ведет к уменьшению ЧДД до 13,27 млн. руб.
Это означает, что прогнозу рассматриваемых параметров инвестиционного проекта предприятие должно уделять особое внимание и, если прогноз указанных неблагоприятных их значений подтвердиться, то у него существуют две альтернативы: 1) идти на риск, т.е. ничего не предпринимать; 2) наметить меры по исключению риска (например, путем соответствующего снижения капитальных и текущих затрат на осуществление рассматриваемого инвестиционного мероприятия.
4.2. Формирование сценариев реализации инвестиционной программы и анализ его устойчивости к их изменениям
В отличие от предыдущего способа метод сценариев позволяет совместить исследование чувствительности интегрального эффекта от реализации проекта с анализом вероятностных оценок его отклонений.
На основе данным таблицы 12 формируются три сценария осуществления инвестиционного проекта: 1) пессимистический (с наиболее неблагоприятными значениями параметров), наиболее вероятный (со средними значениями параметров) и оптимистический (с наиболее благоприятными значениями параметров). Каждому сценарию курсового проекта устанавливается вероятностная оценка р.
Допустим, что для рассматриваемого
примера вероятность
Для каждого сценария рассчитывают значения интегрального эффекта.
Осуществляется вероятностный анализ ожидаемых результатов реализации инвестиционного проекта (таблица 13).
Таблица 13.
Параметры проекта |
Сценарии | ||
пессиместический р=0,3 |
Вероятный р=0,5 |
оптимистический р=0,2 | |
Ко+К |
-203,39 |
-156,45 |
-109,52 |
Кс |
0,70 |
1 |
1,3 |
Е,в долях 1 |
0,195 |
0,15 |
0,105 |
Определение показателей
интегрального эффекта и
Таблица 14.
№ строки |
Результирующие показатели проекта |
Сценарии | ||
пессиместический р=0,3 |
Вероятный р=0,5 |
оптимистический р=0,2 | ||
1 |
ЧДДк, млн.р |
-84,58 |
35,08 |
174,10 |
2 |
М(ЧДД),млн.р |
26,98 |
||
3 |
{ЧДДк-М(ЧДД)} |
12447,57 |
65,54 |
21642,51 |
4 |
σ(ЧДД) |
89,98 |
||
5 |
р(ЧДД)≤0 |
0,38 |
Рассчитывается математическое ожидание интегрального эффекта от реализации инвестиционного проекта:
Определяются квадраты разностей между значениями интегрального эффекта по сценариям и его ожидаемой величиной и рассчитывается среднее квадратичное отклонение ожидаемого эффекта:
Как видно из строки 4 таблицы 14, его величина почти в два раза превышает математическое ожидание интегрального эффекта, что свидетельствует о значительном риске осуществления проекта.
Как видно из строки 5 таблицы 14, величина риска в относительных величинах равна 0,38, т.е. шанс получения нулевого дохода или убытка в результате реализации рассматриваемого проекта составляет 38%, что довольно много.
4.3. Использование метода имитационного моделирования для оценки риска осуществления инвестиционной программы
Полученные в результате
имитационного моделирования
Таблица 15.
Ко+K |
Кс |
Е |
ЧДД, млн.руб. |
187,15 |
0,99 |
0,15 |
2,60 |
155,15 |
1,05 |
0,14 |
51,44 |
215,87 |
1,02 |
0,14 |
-17,77 |
195,88 |
0,84 |
0,16 |
-38,67 |
190,33 |
0,95 |
0,14 |
-1,61 |
178,94 |
1,03 |
0,17 |
8,00 |
196,12 |
0,87 |
0,15 |
-29,49 |
183,29 |
1,06 |
0,15 |
20,32 |
217,64 |
0,92 |
0,17 |
-50,18 |
184,70 |
0,94 |
0,14 |
3,17 |
182,94 |
0,94 |
0,16 |
-7,21 |
190,57 |
0,95 |
0,13 |
-1,38 |
216,46 |
0,92 |
0,15 |
-40,85 |
193,89 |
0,92 |
0,15 |
-16,46 |
204,68 |
1,19 |
0,13 |
32,71 |
200,14 |
0,89 |
0,14 |
-27,70 |
207,25 |
1,09 |
0,15 |
0,79 |
208,85 |
0,91 |
0,15 |
-35,85 |
211,46 |
1,09 |
0,17 |
-12,18 |
205,24 |
0,95 |
0,17 |
-30,98 |
183,92 |
1,09 |
0,14 |
28,47 |
156,81 |
0,93 |
0,16 |
16,51 |
182,92 |
1,25 |
0,16 |
48,12 |
162,70 |
0,83 |
0,16 |
-8,47 |
215,21 |
1,00 |
0,17 |
-32,21 |
209,31 |
1,15 |
0,18 |
-7,23 |
203,68 |
1,00 |
0,17 |
-20,28 |
192,40 |
0,82 |
0,17 |
-42,99 |
214,95 |
0,98 |
0,18 |
-41,73 |
183,30 |
0,77 |
0,15 |
-37,05 |
230,44 |
1,12 |
0,18 |
-31,85 |
201,29 |
1,00 |
0,18 |
-22,75 |
207,39 |
0,93 |
0,15 |
-28,95 |
175,38 |
0,91 |
0,15 |
-1,50 |
187,32 |
0,93 |
0,14 |
-4,07 |
181,91 |
0,94 |
0,14 |
1,81 |
210,38 |
1,04 |
0,16 |
-14,74 |
182,53 |
1,11 |
0,10 |
67,29 |
212,60 |
0,73 |
0,15 |
-74,87 |
177,09 |
1,01 |
0,16 |
12,58 |
187,14 |
1,02 |
0,14 |
16,78 |
196,92 |
0,92 |
0,15 |
-17,89 |
216,61 |
1,09 |
0,13 |
1,07 |
180,04 |
0,92 |
0,13 |
4,23 |
193,95 |
1,08 |
0,15 |
12,18 |
219,81 |
1,09 |
0,17 |
-20,22 |
160,86 |
0,94 |
0,13 |
29,37 |
170,43 |
1,02 |
0,13 |
36,86 |
177,64 |
1,05 |
0,13 |
33,73 |
222,45 |
0,84 |
0,15 |
-63,03 |
Выполняется анализ результатов
имитационного моделирования. Первым
этапом анализа результатов имитационн
Рисунок 2. Распределение Кс,Ко и Е инвестиционного проекта
Из рисунка 2 нетрудно видеть, что в целом вариация значений всех трех параметров носит случайный характер, что подтверждает принятую гипотезу (при принятии нормального закона распределения случайных величин) о их независимости.
На втором этапе в электронной таблице Excel формируется шаблон «Результаты анализа», на основе которого рассчитаются статистические и вероятностные характеристики построенной имитационной модели
(таблица 16):
Таблица 16.
Анализ результатов имитационного моделирования
Показатели |
K+Ко |
Кс |
Е |
ЧДД |
Среднее значение |
194,48 |
0,98 |
0,15 |
-7,04 |
Стандарт отклонение |
17,99 |
0,11 |
0,02 |
29,77 |
Коэффициент вариации |
0,09 |
0,11 |
0,1 |
-4,23 |
Максимум |
230,44 |
0.98 |
0,18 |
67,29 |
Минимум |
155,15 |
0,73 |
0,1 |
-74,87 |
Число случаев ЧДД<0 |
30 | |||
Сумма убытков |
-780,15 | |||
Сумма доходов |
427,99 | |||
Р(Х<=0) |
0 |
0 |
0 |
0,59 |
Р(Х<=min(X)) |
0,01 |
0,01 |
0 |
0,01 |
Р(М(Х)+σ<=Х<=max) |
0,14 |
-0,34 |
0,13 |
0,15 |
Р(М(Х)-σ<=Х<=М(Х)) |
0,34 |
0,34 |
0,34 |
0,34 |
Информация о работе Разработка инвестиционной программы развития дорожной организации