Автор работы: Пользователь скрыл имя, 01 Марта 2013 в 15:26, курсовая работа
Итак, подводя итог всему ранее сказанному, перед тем, как окончательно поставить точку, хочется еще раз заметить необходимость защиты окружающей среды от экологической катастрофы. Нельзя не оценить тот вклад в сохранение живой природы, который вносят международные организации по охране окружающей природной среды. Но говорить о максимальной эффективности можно будет лишь в том случае, если каждый из нас осознает необходимость сохранения того мира, в котором он живет.
1.Краткая история и предмет экология
2.Общие закономерности их действие на живые организмы
2.1Принципы лимитирующих факторов. Закон толерантности
3. Концепция экосистемы. Изучение экосистем. Стабильность (гомеостаз) экосистем.
4. Энергия в экологических системах. Жизнь как термодинамический процесс. Пищевые цепи, пищевые сети и трофические уровни.
5.Эволюция биосферы. Теория большого взрыва как гипотеза зарождения Вселенной. Теория Опарина как гипотеза возникновения жизни на планете. Большой биологический взрыв как гипотеза перехода от неживой природы к живой в форме организации материи.
6. Структура и основные типы биогеохимических циклов.
7. Кислотные дожди. Формирование состава и кислотности атмосферных осадков и поверхностных вод. Основные кислотообразующие газы в атмосфере.
7.1. Тропосферные реакции диоксида серы: фотохимическое и инициированное фотохимическое окисление, окисление в жидкой фазе. Фотохимические реакции оксидов азота в тропосфере.. Вклад хлористого водорода.
8. Принципы рационального использования природных ресурсов.
9. Экозащитная техника и технологии.
Основные промышленные методы очистки сточных вод (механические, химические, физико-химические, биохимические, термические).
Технологические схемы очистки и применяемое оборудование.
10. Административная ответственность за экологические правонарушения. Гражданско-правовая ответственность за экологические правонарушения
11. Международное сотрудничество в области окружающей среды.
10. Список использованной литературы
Виды соединений азота:
В состав атмосферы
входит ряд азотосодержащих
NO, и двуокись азота NO2. Кроме того в состав атмосферы входит единственное щелочное соединение азота – аммиак.
К наиболее важным соединениям азота находящимся в составе атмосферы Земли относятся:
1. Закись азота – NO2
2. Окись азота – NO
3. Азотистый ангидрид – N2O3
4. Двуокись азота – NO2
5. Оксид азота – N2O5
Источники соединений азота:
Естественные источники эмиссии соединений азота в атмосферу:
I. Почвенная эмиссия оксидов азота. В процессе деятельности живущих в почве денитрифицирующих бактерий из нитратов высвобождаются оксиды азота.
Согласно данным на 1990 г. ежегодно во всем мире образуется этим путем около 8 млн. т. оксидов азота (в пересчете на азот).
II. Грозовые
разряды. Во время
III. Горение
биомассы. Данный вид источника
может иметь как искусственное
так и естественное
IV. Прочие
источники. Прочие источники
Антропогенные источники эмиссии соединений азота в атмосферу:
Среди антропогенных источников образования оксидов азота на первом месте стоит горение ископаемого топлива (уголь, нефть, газ и т.д.). Во время горения в результате возникновения высокой температуры находящиеся в воздухе азот и кислород соединяются. В данном случае количество образовавшегося оксида азота NO попорционально темрпературе горения. Кроме того, оксиды азота образуются в результате горения имеющихся в топливе азотосодержащих веществ. Сжигая ископаемое топливо, человечество ежегодно выбрасывает в воздушный бассеин Земли около12 млн.т. оксидов азота. Немного меньше оксидов азота, около 8 млн.т. в год поступает от сжигания горючего
(бензина,
дизельное топливо и т.д.) в
двигателелях внутреннего
Промышленностью во всем мире выбрасывается около 1 млн.т. азота ежегодно.
Таким образом, по крайней мере 37% из почти 56 млн.т. ежегодных выбросов оксида азота образуется из антропогенных источников. Этот процент, однако, будет намного больше, если к нему прибавить продукты сжигания биомассы.
Атмосферный аммиак:
Аммиак, имеющий в водном растворе щелочную реакцию, играет значительную роль в регулировании кислотных дождей, так как он может нейтрализовать атмосферные кислотные соединения:
NH3 + H2SO4 = NH4HSO4
NH3 + NH4HSO4 = (NH4)2SO4
NH3 + HNO3 = NH4NO3
Таким образом, нейтрализуются кислотные осадки и образуются сульфаты и нитрат аммония.
Важнейшим источником атмосферного аммиака является почва. Находящиеся в почве органические вещества разрушаются определенными бактериями, и одним из конечных продуктов этого процесса является аммиак. Ученым удалось установить, что активность бактерии, приводящая в конечном счете к образованию аммиака, зависит в первую очередь от температуры и влажности почвы. В высоких географических широтах (Северная Америка и Северная
Европа), особенно в зимние месяцы, выделение аммиака почвой может быть незначительным. В то же время на этих территориях наблюдается наибольший уровень эмиссии двуокиси серы и оксидов азота, в результате чего находящиеся в атмосфере кислоты не подвергаются нейтрализации и, таким образом, возрастает опасность выпадения кислотного дождя. В процессе распада мочи домашних животных высвобождается большое количество аммиака.
Этот источник аммиака настолько значителен, что в Европе он превышает возможности выделения аммиака почвой.
Химические превращения загрязняющих кислотных веществ в атмосфере:
Попадающие в воздух загрязняющие вещества в значительной мере подвергаются физическим и химическим преобразованиям в атмосфере. Данные процессы протекают одновременно с распространением этих веществ.
Химические превращения соединений серы:
Как правило сера входит в состав выбросов не в полностью окисленной форме
(степень окисления
серы в ее двуокиси равна
4, т.е. к двум атомам кислорода
присоединяется один атом серы)
Кроме двуокиси серы в
атмосфере находится также
Химические превращения соединений азота:
Наиболее распространённым соединением азота, входящим в состав выбросов, является окись азота NO, которая при взаимодействии с кислородом воздуха образует двуокись азота. Последняя в результате реакции с радикалом гидроксила превращается в азотную кислоту NO2 + OH = HNO3. Полученная таким образом азотная кислота в отличае от серной может долгое время оставаться в газообразном состоянии, так как она плохо конденсируется. Это связанно с тем, что азотная кислота обладает большей летучестью, чем серная. Пары азотной кислоты могут быть поглощены капельками облаков или осадков или частицами аэрозоля.
Кислотная седиментация (кислотные дожди)
Заключительным этапом в круговороте загрязняющих веществ является седиментация, которая может происходить двумя путями:
1. вымывание осадков, или влажная седиментация
2. выпадение осадков, или сухая седиментация
Совокупность этих двух процессов и называется кислотной седиментацией.
Воздействие кислотных дождей на окружающую среду
Результатом
кислотной седиминтации является то,
что кислотные атмосферные
Под воздействием кислотных дождей происходит вымывание из растений неорганических соединений, к которым относятся все основные микро– и макроэлементы. Так, например, в наибольших количествах обычно вымываются калий, кальций, магний и марганец. Также подвергаются вымыванию из растений и различных органических соединения, такие как: сахара, аминокислоты, органические кислоты, гормоны, витамины, пектиновые и фенольные вещества и т.п. В результате этих процессов возрастают потери необходимых для растений биогенных элементов, что в результате приводит к их повреждениям.
Поступающие в почву с кислотным дождем ионы водорода могут замещаться находящимися в почве катионами, в результате чего происходит либо выщелачивание кальция, магния и калия, либо их седиментация в обезвоженной форме. Возрастает мобильность токсичных тяжелых металлов, таких как марганец, медь, кадмий. Растворимость тяжелых металлов сильно зависит от рН. Раствореные и вследствие этого легко поглощаемые растениями тяжелые металлы являются ядами для растений и могут привести их к гибели. Одним из наиболее опасных элементов, для живых организмов живущих в почве, является алюминий растворенный в сильнокислой среде. Во многих почвах, например, в северных умеренных и бореальных лесных зонах, наблюдается поглощение более высоких концентраций алюминия по сравнению с концентрациями щелочных катионов. Хотя многие виды растений в состоянии выдержать это соотношение, однако при выпадении значительных количеств кислотных осадков соотношение алюминий-кальций в почвенных водах настолько изменяется, что ослабляется рост корней и создается опасность для существования деревьев.
Происходящие в составе почвы изменения могут преобразовывать состав микроорганизмов в почве, воздействовать на их активность и тем самым влиять на процессы разложения и минерализации, а также на связывание азота и внутреннее закисление.
Несмотря
на выпадающие кислотные осадки почва
обладает способностью к выравниванию
кислотности среды т.е. до определенной
степени она может
Закисление пресных вод.
Закисление пресных вод – это потеря ими способности к нейтрализации.
Закисление как правило вызывают сильные кислоты такие как серная и азотная кислота. На протяжении длительного периода более важную роль играют сульфаты, но во время эпизодических явлений (таяние снега) сульфаты и нитраты действуют совместно.
Процесс закисления водоемов можно условно разделить на 3 фазы:
1. Убыль ионов гидрокарбоната, т.е. уменьшение способности к нейтрализации при неизменяющемся значении рН.
2. Уменьшение рН при уменьшении количества ионов гидрокарбоната. Значение рН тогда падает ниже 5,5. Наиболее чувствительные виды живых организмов начинают погибать уже при рН = 6,5.
3. При рН =
4,5 кислотность
Гибель живых существ помимо действия сильноядовитого иона алюминия может быть вызванна и тем, что под воздействием иона водорода выделяются кадмий, цинк, свинец, марганец, а также другие ядовитые тяжелые металлы. Количество растительных питательных веществ начинает умненьшаться. Ион алюминия образует с ионом ортофосфата нерастворимый фосфат алюминия, который осаждается в форме донного осадка: Al3+ + PO43- ( AlPO4. Как правило уменьшение рН воды идет парралельно с сокращением популяций и гибелью рыб, земноводных, фито- и зоопланктона, а также множества различных других организмов.
Наибольшего масштаба закисление озер и рек достигло в Швеции, Норвегии,
США, Канаде, Дании, Бельгии, Голландии, Германии, Шотландии, Югославии и ещё в целом ряде Европейских государств. Изучение 5000 озер в южной
Норвегии показало, что в 1750 из них исчезли популяции рыб, а 900 другим озерам угрожает серьезная опасность. В южной и центральной частях Щвеции наблюдается потеря рыбы в 2500 озерах, то же самое предпологается в ещё
6500 озерах, где уже обнаруженны
признаки закисления. Почти в
18 000 озерах рН воды менее 5,5,
что очень неблагоприятно
Непосредственное воздействие кислотных осадков на окружающую среду
1. Гибель растений. Непосредственная
гибель растений в наибольшей
степени наблюдается вблизи от
непосредственного источника
2. Прямое воздействие
на человека. Особую опасность
для здоровья человека