Автор работы: Пользователь скрыл имя, 22 Февраля 2012 в 17:09, курсовая работа
Завдання алгебри є вивчення алгебраїчних структур. Безперечно, алгебра вивчає далеко не всі алгебраїчні структури. Можна побудувати чимало прикладів алгебраїчних структур, але в переважній більшості вони не матимуть ніяких застосувань ні в теорії, ні в практиці, а «теорія» таких структур складатиметься з означень і тривіальних наслідків з них. Такі структури, очевидно, не можуть бути об'єктом вивчення.
Нашою метою являється узагальнення на кільці головних ідеалів теореми про існування й одиничність розкладу елементів кільця цілих чисел Z на прості множники.
Означення Говорять, що елемент а області цілісності K має однозначний розклад на прості множники, якщо виконуються умови:
(1) існують у K такі прості елементи рi, що
;
(2) якщо - інший розклад, у якому qi – прості елементи K, то m=n і при відповідній нумерації рi ~ qi для i=1,…, m.
Означення Кільце називається факторіальним, якщо воно є областю цілісності і всякий відмінний від нуля необоротний елемент кільця має однозначний розклад на прості множники.
Відзначимо, що будь-яке поле є факторіальним кільцем, тому що не має відмінних від нуля необоротних елементів.
Теорема Кільце головних ідеалів факторіальне.
Доведення.
Нехай K – кільце головних ідеалів. Нам треба довести, що усякий відмінний від нуля необоротний елемент кільця має розкладання на прості множники. Припустимо, що існує в K необоротний ненульовий елемент а, що нерозкладний на прості множники в Ж. Тоді елемент а є складеним. Отже, його можна подати у вигляді добутку двох власних дільників а=аibi і (a) (ai)
Принаймні один із множників аi, bi, наприклад a1, не має розкладу на прості множники. Отже, a1 можна подати у вигляді добутку двох власних множників:
a1=a2b2, (a1)=(a2)
і т.д. Таким чином, існує нескінченний зростаючий ланцюжок
(a)Ì(a1)Ì(a2)Ì…
ідеалів кільця K, що неможливо, бо за твердженням зростаючий ланцюжок не може бути нескінченним. Отже, усякий необоротний відмінний від нуля елемент кільця K має розклад на прості множники.
Доведемо однозначність розкладу на прості множники. Якщо a – простий елемент, то теорема вірна. Припустимо, що теорема вірна для елементів, представлених у вигляді добутку n простих множників, і доведемо, що тоді вона вірна для елементів, представлених у вигляді добутку n+1 простих множників. Нехай дані будь-які два розклади елемента a на прості множники:
a=p1…pnpn+1=q1…qsqs+1 (1)
Простий елемент рn+1 ділить добуток q1…qsqs+1. Отже, він ділить хоча б один із множників q1…qsqs+1, наприклад qs+1. Так як рn+1 і qs+1 – прості, тo qs+1=upn+1, де u – оборотний елемент кільця. Скорочуючи обидві частини рівності (1) на рn+1, маємо
p1…pn=q1… (uqs).
Отже, по індуктивному припущенню, n=s і при відповідній нумерації рi ~ qi для i=1,…, n. Крім того, рn+1 ~ пn+1.
Доведено.
Задачі
№1
Довести, що число 4 в кільці Z[ ] неоднозначно розкладається в добуток простих множників.
Доведення.
Знайдемо спочатку дільники одиниці в Z[ ]. Нехай a+b , c+d – дільники одиниці, a, b, c, d ÎZ. Тоді
(a+b ) (c+d )=1.
Знайдемо норму обох частин цієї рівності:
Nr (a+b )=(a2+3b2).
Маємо
(a2+3b2) (c2+3d2)=1. (1)
Рівність (1) виконується, якщо
a2+3b2=c2+3d2=1. (2)
Рівність (2), в свою чергу, виконується при a=±1, b=0, c=±1, d=0. Отже, в кільці Z[ ] лише 2 дільники одиниці: 1, –1.
Доведемо, що для числа 4 в кільці Z[ ] є два різних розклади в добуток простих множників:
4=2·2=(1+ ) (1– ).
Для цього покажемо, що 2, 1+ , 1– є прості числа в Z[ ], а пари чисел 2, 1+ та 2, 1– не є асоційованими.
Оскільки в кільці Z[ ] асоційовані числа відрізняються лише знаком, то покажемо, що 2, 1+ , 1– є прості числа в Z[ ].
Якщо 2=(a+b ) (c+d ), то знайшовши норми від обох частин, дістанемо 4= (a2+3b2) (c2+3d2).
Число
4 розкладається в добуток
4=2·2=1·4.
Якщо a2+3b2=2, то b2<1, тобто b=0. Тоді a2=2, що неможливо для цілого числа a. Отже, a2+3b2=1 або a2+3b2=4. Якщо a2+3b2=1, то a+b – дільник одиниці. Якщо a2+3b2=4, то c2+3d2=1 і c+d – дільник одиниці.
Отже, 2 є просте число в кільці Z[ ]. Оскільки Nr (1± )=4, то аналогічно доводять, що числа 1± є простими.
Отже, число 4 в кільці Z[ ] розкладається на прості множники двома різними способами.
Доведено.
3.1.4 Евклідові кільця, їх факторіальність
Порівняно з кільцями головних ідеалів більш близькими до кільця цілих чисел за своїми властивостями є кільця, в яких справедлива теорема, що є аналогом теореми про ділення з остачею в кільці цілих чисел. Ці кільця називають евклідовими. Вони означаються так:
Означення. Область цілісності R з одиницею називається евклідовим кільцем, якщо існує відображення φ множини відмінних від 0 елементів цієї області цілісності в множину цілих невід'ємних чисел N0, тобто φ:R\{0}→N0, яке задовольняє таку вимогу: для будь-яких елементів a, bÎR, b¹0 в R існують такі елементи q і r, що а =bq+r, причому або r= 0, або φ(r)<φ(b).
Кільце цілих чисел Z – евклідове; відображення φ, про яке йде мова в означенні, задається так:
Евклідовим також є кільце многочленів від невідомого х з коефіцієнтами з поля Р.
Теорема 9. Кожне евклідове кільце R є кільцем головних ідеалів.
Доведення.
Нехай U – довільний ідеал евклідового кільця R. Якщо U – нульовий ідеал, то U= (0). Припустимо, що ідеал U – відмінний від нульового. Тоді в U є елементи, відмінні від нуля. Серед відмінних від нуля елементів ідеалу U, очевидно, є такий елемент a0, що φ(a0) φ(a) для будь-якого ненульового елемента аÎU. За означенням евклідового кільця, для будь-якого елемента аÎU в кільці R існують такі елементи q і r, що a=a0q+r, причому, якщо r¹ 0, то φ(r)<φ(a0). Але оскільки r=a-a0qÎU, то можливість r¹0 виключається і тому r=0. Таким чином, a=a0q і, отже, U є головний ідеал, породжений елементом а0.
Доведено.
Наслідок Будь–яке евклідове кільце факторіальне.
Наслідок Кільце Z цілих чисел є кільцем головних ідеалів і, значить, факторіальне.
Оскільки кожне евклідове кільце є кільцем головних ідеалів, то для елементів будь-якого евклідового кільця справедливі теореми 7 і 8. Зауважимо, що твердження, обернене твердженню 9, неправильне: існують кільця головних ідеалів, які не є евклідовими.
Нам уже відомо
про існування найбільшого
Оскільки φ(а1) > φ(а2) > φ(а3) >… > φ(аs-1) >φ(аs)>…, то цей процес послідовного ділення не може продовжуватись нескінченно: в противному разі множина цілих невід'ємних чисел φ(а1) > φ(а2)>… > φ(аs) >… не мала б найменшого числа. Отже, через кілька кроків ми дійдемо до ділення з остачею нуль: am-1= аmqm. Таким чином, ми матимемо рівності
а0 = а1q1+а2,
a1 = a2q2 +a3,
а2 =а3q3+a4,
……………
am-3=am-2qm-2+am-1,
am-2=am-1qm-1+am,
am-1=amqm+1.
Остання рівність означає, що аm дільником am-1. Оскільки кожен з доданків правої частини передостанньої рівності ділиться на аm, то і її ліва частина ділиться на аm, тобто аm є дільником am-2. Аналогічними міркуваннями ми доведемо, що аm є дільником am-3, am-4,…, a4, а3, a2, a1, а0. Отже, аm є спільним дільником елементів ао і а1. Покажемо тепер, що аm ділиться на будь-який спільний дільник елементів ао і а1. Нехай b – довільно вибраний спільний дільник aо і a1. Тоді з рівності ао = a1q1+q2 випливає, що a2 ділиться на b, з рівності а1 = a2q2 + а3 випливає, що а3 ділиться на b і т.д. Нарешті, з рівності ат–2 = aт–1qт–1 + am випливає, що am ділиться на b. Таким чином, елемент аm є спільним дільником елементів a0 і a1 і ділиться на будь-який спільний дільник цих елементів, тобто аm є найбільшим спільним дільником елементів a0 i a1.
Задачі
№1
Довести, що в 5кільці Z[ ] простими є такі елементи
а) 2;
б) –2;
в) 1+ і;
г) 1– і;
Знайдемо спочатку дільники одиниці в Z[ ].
Нехай a+b , c+d – дільники одиниці, a, b, c, d ÎZ. Тоді
(a+b ) (c+d )=1.
Знайдемо норму обох частин цієї рівності:
Nr (a+b )=(a2+3b2).
Маємо
(a2+3b2) (c2+3d2)=1. (1)
Рівність (1) виконується, якщо
a2+3b2=c2+3d2=1. (2)
Рівність (2), в свою чергу, виконується при a=±1, b=0, c=±1, d=0. Отже, в кільці Z[ ] лише 2 дільники одиниці: 1, –1.
а) Зрозуміло, що 2¹0 і не є дільником одиниці в кільці Z[ ]. Використаємо норму і покажемо, що 2 – простий елемент в кільці Z[ ]. Оскільки Nr(2)=4, то, припустивши, що 2 є складене число, дістаємо