Автор работы: Пользователь скрыл имя, 22 Февраля 2012 в 17:09, курсовая работа
Завдання алгебри є вивчення алгебраїчних структур. Безперечно, алгебра вивчає далеко не всі алгебраїчні структури. Можна побудувати чимало прикладів алгебраїчних структур, але в переважній більшості вони не матимуть ніяких застосувань ні в теорії, ні в практиці, а «теорія» таких структур складатиметься з означень і тривіальних наслідків з них. Такі структури, очевидно, не можуть бути об'єктом вивчення.
де pi, pi¢ÎK, qi, qi¢ – незвідні, а виходить, і примітивні поліноми позитивного степеня. З (2) випливає, що
(3) p1…pk ~p1¢…pr¢ в K;
(4) q1…qs~q1¢…qt¢ в K[x].
Оскільки кільце K факторіальне, то з (3) випливає, що k=r і при відповідній нумерації
(5) pi~pi¢ в K для i=1, 2, …, k
Далі, за наслідком 3.6, поліноми qi і qi¢ незвідні в кільці F[х]. У силу факторіальності кільця F[х] з (4) випливає, що s=t і при відповідній нумерації
qi~ qi¢ в F[х] для i=1,…, s.
Поліноми qi і qi¢ незвідні в K[x] і, значить, примітивні в K[х], крім того, ці поліноми асоційовані в F[x]. Отже, вони асоційовані в K[x],
(6) qi~ qi¢ в K[х] для i=1,…, s.
У силу (5) і (6) поліном f має однозначний розклад на прості множники в кільці K[x]. Отже, показано, що кільце K[x] факторіальне.
Доведено.
Задачі
№1
Довести, що множина I всіх многочленів кільця Z[x], вільний член яких дорівнює парному числу, є ідеалом Z[x]. Чи є цей ідеал головним?
Розв’язання.
Очевидно, що ця множина замкнена відносно віднімання та множення на довільний елемент кільця. Отже, ця множина буде ідеалом.
Візьмемо будь–які елементи
x2+4ÎI, x+2ÎI.
Перевіримо чи x2+4Mx+2.
x2+4=x2–4+8=(x-2) (x+2)+8.
Так як x2+4 не ділиться на x+2 то дана множина I не буде головним ідеалом.
Відповідь: Множина I буде ідеалом, але не головним.
№2
Знайти НСД і НСК таких многочленів:
f(x)=x4+2x3–2x-1,
g(x)=(x+1) (x2–x-2)
в кільці Q[x].
Розв’язання.
Розкладемо дані многочлени на множники:
f(x)=x4–1+2x(x2–1)=(x2–1) (x2+2x+1)=(x+1)3(x-1),
g(x)=(x+1) (x-2) (x+1)=(x+1)2(x-2).
Очевидно, що
(f, g)=(x+1)2,
[f, g]=(x+1)3(x-1) (x-2).
Відповідь: (f, g)=(x+1)2, [f, g]=(x+1)3(x-1) (x-2).
№3
Розкласти на незвідні в полі P множники такий многочлен:
f(x)=x4–2x3–27x2–44x+7.
Розв’язання.
Розклад матиме такий вигляд:
f(x)=(x2+bx+1) (x2+cx+7).
f(x)=x4+(c+b) x3+(bc+8) x2+(7b+c) x+7.
с=–2-b,
(–2-b) b=–35,
– b2–2b=–35,
b2+2b-35=0,
Отже, даний многочлен розкладається таким чином:
f(x)=(x2–7x+1) (x2+5x+7).
Відповідь: f(x)=(x2–7x+1) (x2+5x+7).
3.3 Кільце многочленів від кількох змінних
3.3.1 Поняття кільця многочленів від кількох змінних
Означення Кільцем многочленів R[х1, х2,…, xn-1, хn] від n змінних х1, х2,…, xn-1, хn над областю цілісності R називається кільце многочленів від змінної xn над кільцем R[х1, х2,…, xn-1] тобто
R[х1, х2,…, xn-1, хn] = R[х1, х2,…, xn-1] [xn] (4)
Це означення має індуктивний характер. При п=1 воно зводиться до означення кільця многочленів від однієї змінної х1 над областю цілісності R (природно вважати, що при п =1 R[х1, х2,…, xn-1, хn] =R). Якщо ж уже означено кільце R[х1, х2,…, xn-1] при п ³1, то за допомогою (4) дістаємо означення кільця R[х1, х2,…, xn-1, хn]. Отже, для довільного натурального п означено кільце многочленів від п змінних х1, х2,…, xn-1, хn
Теорема Кільце многочленів R[х1, х2,…, xn-1, хn] над областю цілісності R є область цілісності.
Доведення.
Твердження правильне при п = 1. Припустимо, що воно правильне при п = т і розглянемо кільце R[х1, х2,…, xm, хm+1]. Згідно з означенням 1, R[х1, х2,…, xm, хm+1] є кільце многочленів над Rm= R[х1, х2,…, xm]. За припущенням індукції, R, є область цілісності. Отже, Rm[xm+1]=R[х1, х2,…, xm, хm+1] є область цілісності. За принципом індукції, R[х1, х2,…, xn-1, хn] є область цілісності при довільному натуральному п.
Доведено.
Зрозуміло, що коли R – область цілісності з одиницею, то R[х1, х2,…, xn-1, хn] – область цілісності з одиницею.
Наступна теорема встановлює будову елементів області цілісності R[х1, х2,…, xn-1, хn].
Теорема 2. Кожний елемент fÎR [х1, х2,…, xn-1, хn] можна подати у вигляді скінченної суми
AiÎR, kijÎZ+ (5)
Навпаки, будь-який вираз виду (5) є елементом кільця R[х1, х2,…, xn-1, хn].
Доведення
Доведення проведемо індукцією по n. При n=1 твердження правильне. Припустимо, що воно правильне при n=m і перевіримо його правильність при n=m+1. За означенням 1, кожний елемент fÎR [х1, х2,…, xm, хm+1] є многочлен від Хm=1 над областю цілісності R [х1, х2,…, xm], і тому його можна подати у вигляді суми
(6)
За припущенням індукції, кожний многочлен aj(x1, …, xm) від n змінних можна подати у вигляді скінченної суми
, (7)
,
(i=1, 2, …, Nj; s=1, 2, …, m; j=0, 1, 2, …, l).
Підставивши вираз (7) в (6) і виконавши відповідні дії (в розумінні дій у кільці R[х1, х2,…, xm, хm+1] з урахуванням того, що воно містить R[х1, х2,…, xm] як підкільце), дістанемо скінченну суму виду
, (8)
де BrÎR (r=1, …, N), бо кожне Br є якесь з .
Отже, твердження теореми правильне і при n=m+1, тобто за принципом математичної індукції теорему доведено.
Доведено.
Означення Кожний елемент кільця R[х1, х2,…, xn] називають многочленом від n змінних х1, х2,…, xn над R. і позначають f(х1, х2,…, xn), g(х1, х2,…, xn) і т. п.
Згідно з теоремою 2, будь-який многочлен з R[х1, х2,…, xn] можна подати у формі суми (5)
AiÎR, kijÎZ+ (9)
Кожний доданок цієї суми називають членом многочлена f(х1, х2,…, xn), відповідний елемент AiÎR – коефіцієнтом члена (і многочлена). Два члени, які відрізняються лише коефіцієнтами, називають подібними; іншими словами, члени подібні, якщо усі змінні входять множниками в ці члени у попарно рівних степенях, наприклад та . При цьому порядок, в якому записано множники неістотний, тобто