Устройство геодезических сетей при съемке больших территорий

Автор работы: Пользователь скрыл имя, 10 Февраля 2013 в 13:40, курсовая работа

Описание

Цель данной курсовой работы по геодезии на тему: «Геодезические сети» - научиться создавать качественное геодезическое обеспечение работ по проведению земельного кадастра, мониторинга, планирования и осуществления строительства, а также других научных и хозяйственных работ.
Задача: освоить современные технологии геодезических работ по тахеометрической съёмке, уравниванию системы теодолитных и нивелирных ходов, определению дополнительных пунктов при сгущении геодезической сети, оценке точности выполненных работ.

Содержание

Введение……………………………………………………………………………..5
1. Устройство геодезических сетей при съемке больших территорий………….7
1.1 Государственная геодезическая сеть………………………………………….8
1.2 Геодезические сети сгущения………………………………………………...11
1.3 Съёмочные сети………………………………………………………………..14
2. Измерения в геодезических сетях……………………………………………...17
2.1 Устройство и измерение углов теодолитом 3Т2КП………………………....18
2.2 Устройство светодальномера СТ-5 («Блеск») и измерение и расстояний…21
2.3 Устройство электронного тахеометра. Измерение им горизонтальных и вертикальных углов, расстояний, координат Х, У, Н точек местности………..23
3. Погрешности геодезических измерений………………………………………25
3.1 Геодезическое измерение, результат измерения, методы и условия измерений. Равноточные и неравноточные измерения…………………………25
3.2 Классификация погрешностей геодезических измерений. Средняя квадратическая погрешность. Формы Гаусса и Бесселя для её вычисления…..26
3.3 Веса измерений…………………………………………………………………30
3.4 Функции по результатам измерений и оценка их точности…………………31
4. Определение дополнительных пунктов………………………………………33
4.1 Цель и методы определения дополнительных пунктов……………………...33
4.2 Передача координат с вершины знака на землю. (Решение примера)……...33
4.3 Решение прямой и обратной засечки (по варианту задания)………………..37
5. Уравнивание системы ходов съемочной сети…………………………………45
5.1 Общее понятие о системах ходов и их уравнивании………………………...45
5.2 Упрощенное уравнение системы теодолитных ходов по варианту задания………………………………………………………………………………46
6. Тахеометрическая съёмка………………………………………………………50
6.1 Ведомость вычисления координат съемочных точек……………………….50
6.2 Ведомость вычисления высот съемочных точек…………………………….50
Приложение к разделу 3…………………………………………………………...54
Список использованной литературы……………………………………………...67

Работа состоит из  1 файл

Курсовая работа по геодезии.docx

— 207.51 Кб (Скачать документ)

Систематические погрешности измерений – постоянная составляющая, связанная с дефектами: зрение, неисправность технических средств, температура. Систематические погрешности могут быть как одностороннего действия, так и переменного (периодические погрешности). Их стремятся по возможности учесть или исключить из результатов измерений при организации и проведении работ.

Случайные погрешности измерений неизбежно сопутствуют всем измерениям. Погрешности случайные исключить нельзя, но можно ослабить их влияние на искомый результат за счет проведения дополнительных измерений. Это самые коварные погрешности, сопутствующие всем измерениям. Могут быть разные как по величине, так и по знаку.

E = Q + O +∆

Если грубые и систематические  погрешности могут быть изучены  и исключены из результата измерений, то случайные могут быть учтены на основе глубокого измерения. Изучение на основе теории вероятностей.

На практике сложность  заключается в том, что измерения  проводятся какое-то ограниченное количество раз и поэтому для оценки точности измерений используют приближённую оценку среднего квадратического отклонения, которую называют среднеквадратической погрешностью (СКП).

Гауссом была предложена формула  среднеквадратической погрешности:

2ср = (∆21 + ∆22 +… +∆2n) / n,

2 = m2 = (∆21 + ∆22 +… +∆2n) / n,

∆ = m,

ср = m = √(∑∆2i / n)

Формула применяется, когда  погрешности вычислены по истинным значениям.

Формула Бесселя:

m = √(∑V2i / (n-1))

Средняя квадратическая погрешность  арифметической середины в Ön раз меньше средней квадратической погрешности отдельного измерения

М=m/Ön

При оценке в качестве единицы  меры точности используют среднеквадратическую погрешность с весом равным единице. Её называют средней квадратической погрешностью единицы веса.

µ2 = P×m2 – µ = m√P, m = µ / √P, т.е. средняя квадратическая погрешность любого результата измерения равна погрешности измерения с весом 1 (µ) и делённая на корень квадратный из веса этого результата (P).

При достаточно большом числе  измерений можно записать ∑m2P=∑∆2P (так как ∆ = m):

µ = √(∑(∆2×P)/n), т.е. средняя квадратическая погрешность измерения с весом, равным 1 равна корню квадратному из дроби в числителе, которого сумма произведений квадратов абсолютных погрешностей неравноточных измерений на их веса, а в знаменателе – число неравноточных измерений.

Средняя квадратическая погрешность  общей арифметической середины по формуле:

M0 = µ / √∑P

Подставив вместо µ её значение получим :

M0 = √(∑∆2×P/n) / (√∑P) = √[(∑∆2×P) / n×(∑P)]

M0 = √[ (∆12P1 + ∆22P2 +… + ∆n2Pn) / n×(P1 + P2 + … + Pn) ] – формула Гаусса, средняя квадратическая погрешность общей арифметической середины равна корню квадратному из дроби, в числителе которой сумма произведений квадратов погрешностей неравноточных измерений на их веса, а знаменатель – произведение количества измерений на сумму их весов.

µ = √ [∑( V2×P ) / (n-1)] - формула Бесселя для вычисления средней арифметической погрешности с измерением веса, равным 1 для ряда неравноточных измерений по их вероятнейшим погрешностям. Она справедлива для большого ряда измерений, а для ограниченного (часто на практике) содержит погрешности: mµ = µ / [2×(n-1)] – это надёжность оценки µ.

 

 

3.3 Веса измерений

Вес измерения – это  отвлеченное число, обратно пропорциональное квадрату СКП результата измерения.

Формула веса: P = К / m2,

где P – вес результата измерения,

К – произвольное постоянное число для данного ряда измерений,

m – СКП результата измерения.

Из формулы видно, что  чем меньше СКП измерения, тем  оно точнее и его вес больше.

Отношение весов двух измерений  обратно пропорционально квадратам СКП этих измерений, т.е.:

P1 / P2 = m22 / m12

Если имеется ряд измерений  l1, l2, …, ln, то очевидно, что вес одного измерения будет меньше веса среднего арифметического этих значений, т.е.:

Pm < PM,

где m – погрешность одного измерения,

M – погрешность среднего арифметического значения.

Тогда отношение весов  обратнопропорционально отношению  квадратов СКП:

PM/Pm = m2/M2;M = m/√n;

PM/Pm = m2/ (m/√n) 2 = m2/ (m2/n) = m2×n/m2 = n.

Таким образом, вес среднего арифметического значения больше отдельно взятого значения в n раз. Следовательно, вес арифметической середины равен числу измерений, из которых она составлена.

Общая арифметическая середина из неравноточных измерений равна  дроби, в числителе которой –  сумма произведений средних арифметических значений из результатов измерений  на их веса, а знаменатель – сумма  всех весов измерений. Следовательно, вес общей арифметической середины равен сумме весов неравноточных  измерений:

A0 = (a1P1 + a2P2 + … + anPn) / (P1 + P2 + … +Pn),

где A0 – общая арифметическая середина,

ai – результат отдельно взятого измерения,

Pi – вес отдельно взятого измерения.

СКП любого результата измерения  равна погрешности измерения  с весом 1, делимой на корень квадратный из веса этого результата, т.е.:

m = M/√P,

где m – СКП любого результата измерения;

M – погрешность измерения с весом 1;

P – вес данного результата измерения.

СКП измерения с весом 1 равна корню квадратному из дроби, в числителе которой – сумма  произведений квадратов абсолютных погрешностей неравноточных измерений  на их веса, а в знаменателе –  число неравноточных измерений.

M = √ (∑∆2P/n),

где ∆ - абсолютная погрешность  неравноточного измерения;

P –его вес;

n – число измерений.

 

3.4 Функции по результатам измерений и оценка их точности.

По измеренным значениям  независимых один от другого аргументов надо определить величину У, т.е. решить уравнение, функциональная связь в  котором может быть выражена в  любой форме, что в общем виде записывают так:

У = f(x,x2...xn)

При измерениях величин  хь х2...хп возникают погрешности, поэтому в вычислениях будут участвовать значения (x1 + Δ1), (х2 + Δ2)...( хn + Δn), и функция У получит общую погрешность Δу. Тогда

У - Δy = f(x1 – Δ1), (х2 + Δ2).. .(хn + Δn)

Погрешности Δ1 Δ2...Δn малы, поэтому для решения этого уравнения функцию f на ряд по строке Тейлора и, ограничиваясь членами, содержащими первые степени разложения, вычисляют Δу

       

Частные поизводные по аргументам данной функции при некоторых  фиксированных значениях аргументов – величины постоянные, поэтому  по анологии с формулой 11 получают формулу  общего вида:

                  

 

4. Определение дополнительных пунктов

4.1 Цель и методы определения  дополнительных пунктов

Дополнительные пункты определяются наряду со съемочной сетью в основном для сгущения существующей геодезической  сети пунктами съемочного обоснования. Они строятся прямыми, обратными, комбинированными, а при наличии электронных  дальномеров – линейными засечками  и лучевым методом.

В некоторых случаях дополнительный пункт определяется передачей (снесением) координат с вершины знака  на землю.

 

4.2 Передача координат с вершины  знака на землю. (Решение примера)

При производстве топографо-геодезических  работ в городских условиях невозможно бывает установить теодолит на пункте геодезической сети (пунктом является церковь, антенна и т.п.). Тогда  и возникает задача по снесению координат  пункта триангуляции на землю для  обеспечения производства геодезических  работ на данной территории.

Исходные данные: пункт  A с координатами XA, YA; пункты геодезической сети B (XB, YB) и C (XC, YC).

Полевые измерения: линейные измерения выбранных базисов  b1 и b'1; измерения горизонтальных углов ß1 , ß'1 , ß2 , ß'2 ; б , б'.

Требуется найти координаты точки P (XP, YP).

Решение задачи разделяется  на следующие этапы:

 

 

Решение числового примера

Исходные данные

Обозначе-

ния

А

ХА, YА

B

ХB, YB

C

ХC, YC

β1

β2

β2

β2`

β1

β1`

б

б‘

Численные значения

6327,46

8961,24

5604,18

266,12

38o26'00"

70o08'54"

138o33'49"

27351,48

25777,06

22125,76

198,38

42˚26'36"

87˚28'00"

71˚55'02"


 

Вычисление расстояния DАР

Обозначе-

ния

B1

B2

sinβ2

sinβ‘2

sin(β12 )

sin(β‘1+β‘2)

B1 sinβ2

B2 sinβ‘2

D1

D2

D1 -D2

2D/T

Dср

Численные значения

266,12

0,62160

0,94788

165,420

174,52

0,00

174,52

198,38

0,67482

0,76705

133,871

174,52


 

 

Решение обратных задач

Обозначения

YB

YА

ХB

ХА

YC

YА

ХC

ХА

tgαAB

αAB

tgαAC

αAC

sinα AB

sinα AC

cos αAB

cosαAC

S AB

S AC

Численные значения

10777,06

8961,24

7125,76

5605,08

-0,5977

7,23421

-0,51309

-0,99058

0,85833

-0,13693

3068,48

12351,48

6327,46

12351,48

6327,46

329˚07'55"

262o07'51"

5275,51


 

 

Вычисление дирекционных углов αАР = αD

Обозначения

D

sinб

sinб'

S AB

S AC

sin ψ

sin ψ'

ψ

ψ'

φ

φ'

αAB

αAC

αD

α'D

αD-α'D

õmß

Численные значения

174,52

0,66179

3068,48

0,03950

2o15'50"

39o10'41"

329o07'55"

8o18'36"

∆α=1'30"

0,95061

5275,51

0,03292

1o53'13"

106o11'46"

262o07'51"

8o18'37"


 

 

sin ψ = D×sinб/ S AB; sin =174,52×0,66179/3068,48=0,03950;

sin ψ' = D×sinб'/ S; sin `=174,52×0,95061/5275,51=0,03292;

Информация о работе Устройство геодезических сетей при съемке больших территорий