Автор работы: Пользователь скрыл имя, 02 Декабря 2011 в 23:59, реферат
Принимать решения можно либо на основе объективных данных (в том числе с помощью оптимизационных методов и вероятностно-статистических моделей), либо на основе мнений специалистов (экспертов). В задачах стратегического и оперативного управления, технико-экономического анализа, обеспечения экологической безопасности, управления природопользованием и охраны окружающей природной среды и т.п. постоянно используются разнообразные методы экспертных оценок. О них рассказывается в настоящей главе.
Рассмотрим в качестве примера применения результатов теории измерений, связанных со средними величинами в порядковой шкале, один сюжет, связанный с ранжировками и рейтингами.
Методы средних баллов. В настоящее время распространены экспертные, маркетинговые, квалиметрические, социологические и иные опросы, в которых опрашиваемых просят выставить баллы объектам, изделиям, технологическим процессам, предприятиям, проектам, заявкам на выполнение научно-исследовательских работ, идеям, проблемам, программам, политикам и т.п. Затем рассчитывают средние баллы и рассматривают их как интегральные (т.е. обобщенные, итоговые) оценки, выставленные коллективом опрошенных экспертов. Какими формулами пользоваться для вычисления средних величин? Ведь средних величин существует, как мы знаем, очень много разных видов.
Обычно применяют среднее арифметическое. Специалисты по теории измерений уже около 30 лет знают, что такой способ некорректен, поскольку баллы обычно измерены в порядковой шкале (см. выше). Обоснованным является использование медиан в качестве средних баллов. Однако полностью игнорировать средние арифметические нецелесообразно из-за их привычности и распространенности. Поэтому представляется рациональным использовать одновременно оба метода - и метод средних арифметических рангов (баллов), и методов медианных рангов. Такая рекомендация находится в согласии с общенаучной концепцией устойчивости [2], рекомендующей применять различные методы для обработки одних и тех же данных с целью выделить выводы, получаемые одновременно при всех методах. Такие выводы, видимо, соответствуют реальной действительности, в то время как заключения, меняющиеся от метода к методу, зависят от субъективизма исследователя, выбирающего метод обработки исходных экспертных оценок.
Пример сравнения восьми проектов. Рассмотрим конкретный пример применения только что сформулированного подхода.
По заданию
руководства фирмы
Таблица 1.
Ранги 8 проектов по степени привлекательности
для включения в план стратегического развития фирмы
|
Примечание. Эксперт № 4 считает, что проекты М-К и Б равноценны, но уступают лишь одному проекту - проекту Сол. Поэтому проекты М-К и Б должны были бы стоять на втором и третьем местах и получить баллы 2 и 3. Поскольку они равноценны, то получают средний балл (2+3)/ 2 = 5/ 2 = 2,5.
Анализируя результаты
работы экспертов (т.е. упомянутую таблицу),
члены аналитической
Метод средних арифметических рангов. Сначала для получения группового мнения экспертов был применен метод средних арифметических рангов. Для этого прежде всего была подсчитана сумма рангов, присвоенных проектам (см. табл. 1). Затем эта сумма была разделена на число экспертов, в результате рассчитан средний арифметический ранг (именно эта операция дала название методу). По средним рангам строится итоговая ранжировка (в другой терминологии - упорядочение), исходя из принципа - чем меньше средний ранг, чем лучше проект. Наименьший средний ранг, равный 2,625, у проекта Б, - следовательно, в итоговой ранжировке он получает ранг 1. Следующая по величине сумма, равная 3,125, у проекта М-К, - и он получает итоговый ранг 2. Проекты Л и Сол имеют одинаковые суммы (равные 3,25), значит, с точки зрения экспертов они равноценны (при рассматриваемом способе сведения вместе мнений экспертов), а потому они должны бы стоять на 3 и 4 местах и получают средний балл (3+4) /2 = 3,5. Дальнейшие результаты приведены в табл. 2 ниже.
Итак, ранжировка по суммам рангов (или, что то же самое, по средним арифметическим рангам) имеет вид:
Б < М-К < {Л, Сол} < Д < Стеф < Г-Б < К . (1)
Здесь запись типа "А<Б" означает, что проект А предшествует проекту Б (т.е. проект А лучше проекта Б). Поскольку проекты Л и Сол получили одинаковую сумму баллов, то по рассматриваемому методу они эквивалентны, а потому объединены в группу (в фигурных скобках). В терминологии математической статистики ранжировка (1) имеет одну связь.
Метод медиан рангов. Значит, наука сказала свое слово, итог расчетов - ранжировка (1), и на ее основе предстоит принимать решение? Так был поставлен вопрос при обсуждении полученных результатов на заседании Правления фирмы. Но тут наиболее знакомый с современной эконометрикой член Правления вспомнил то, о чем шла речь выше. Он вспомнил, что ответы экспертов измерены в порядковой шкале, а потому для них неправомерно проводить усреднение методом средних арифметических. Надо использовать метод медиан.
Что это значит? Надо взять ответы экспертов, соответствующие одному из проектов, например, проекту Д. Это ранги 5, 5, 1, 6, 8, 5, 6, 5, 6, 5, 7, 1. Затем их надо расположить в порядке неубывания (проще было бы сказать – «в порядке возрастания», но поскольку некоторые ответы совпадают, то приходится использовать непривычный термин «неубывание»). Получим последовательность: 1, 1, 5, 5, 5, 5, 5, 6, 6, 6, 7, 8. На центральных местах - шестом и седьмом - стоят 5 и 5. Следовательно, медиана равна 5.
Таблица 2.
Результаты расчетов по методу средних арифметических
и методу медиан для данных, приведенных в таблице 1.
|
Медианы совокупностей из 12 рангов, соответствующих определенным проектам, приведены в предпоследней строке табл.2. (При этом медианы вычислены по обычным правилам статистики - как среднее арифметическое центральных членов вариационного ряда.) Итоговое упорядочение комиссии экспертов по методу медиан приведено в последней строке таблицы. Ранжировка (т.е. упорядочение - итоговое мнение комиссии экспертов) по медианам имеет вид:
Б < {М-К, Л} < Сол < Д < Стеф < К <Г-Б . (2)
Поскольку проекты Л и М-К имеют одинаковые медианы баллов, то по рассматриваемому методу ранжирования они эквивалентны, а потому объединены в группу (кластер), т.е. с точки зрения математической статистики ранжировка (4) имеет одну связь.
Сравнение ранжировок по методу средних арифметических и методу медиан. Сравнение ранжировок (1) и (2) показывает их близость (похожесть). Можно принять, что проекты М-К, Л, Сол упорядочены как М-К < Л < Сол, но из-за погрешностей экспертных оценок в одном методе признаны равноценными проекты Л и Сол (ранжировка (1)), а в другом - проекты М-К и Л (ранжировка (2)). Существенным является только расхождение, касающееся упорядочения проектов К и Г-Б: в ранжировке (3) Г-Б < К, а в ранжировке (4), наоборот, К < Г-Б. Однако эти проекты - наименее привлекательные из восьми рассматриваемых, и при выборе наиболее привлекательных проектов для дальнейшего обсуждения и использования на указанное расхождение можно не обращать внимания.
Рассмотренный пример демонстрирует сходство и различие ранжировок, полученных по методу средних арифметических рангов и по методу медиан, а также пользу от их совместного применения.
Метод согласования кластеризованных ранжировок. Проблема состоит в выделении общего нестрогого порядка из набора кластеризованных ранжировок (на статистическом языке - ранжировок со связями). Этот набор может отражать мнения нескольких экспертов или быть получен при обработке мнений экспертов различными методами. Предлагается метод согласования кластеризованных ранжировок, позволяющий «загнать» противоречия внутрь специальным образом построенных кластеров (групп), в то время как упорядочение кластеров соответствует одновременно всем исходным упорядочениям.
В различных прикладных областях возникает необходимость анализа нескольких кластеризованных ранжировок объектов. К таким областям относятся прежде всего экология, инженерный бизнес, менеджмент, экономика, социология, прогнозирование, научные и технические исследования и т.д., особенно те их разделы, что связаны с экспертными оценками (см., например, [1,3]). В качестве объектов могут выступать образцы продукции, технологии, математические модели, проекты, кандидаты на должность и др. Кластеризованные ранжировки могут быть получены как с помощью экспертов, так и объективным путем, например, при сопоставлении математических моделей с экспериментальными данными с помощью того или иного критерия качества. Описанный ниже метод был разработан в связи с проблемами химической безопасности биосферы и экологического страхования [3].