Автор работы: Пользователь скрыл имя, 24 Марта 2012 в 18:25, курсовая работа
Цель данной работы – раскрыть сущность методов прогнозирования, рассказать об их содержании, назначении, показать принципы, указать на достоинства и недостатки данных методов прогнозирования.
Наиболее общими приемами выравнивания являются логарифмирование и замена переменных.
В случае если эмпирическая формула предполагается содержащей три параметра либо известно, что функция трехпараметрическая, иногда удается путем некоторых преобразований исключить один из параметров, а оставшиеся два привести к одной из формул выравнивания.
Можно рассматривать выравнивание не только как метод представления исходных данных, но и как метод непосредственного приближенного определения параметров функции, аппроксимирующей9 исходный числовой ряд. Зачастую именно так и используется этот метод в некоторых экстраполяционных прогнозах. Отметим, что возможность непосредственного его использования для определения параметров аппроксимирующей функции определяется главным образом видом исходного числового ряда и степенью наших знаний, нашей уверенности относительно вида функции, описывающей исследуемый процесс.
В том случае, если вид функции нам неизвестен, выравнивание следует рассматривать как предварительную процедуру, в процессе которой путем применения различных формул и приемов выясняется наиболее подходящий вид функции, описывающей эмпирический ряд.
Одной из разновидностей метода выравнивания является исследование эмпирического ряда с целью выяснения некоторых свойств функции, описывающей его. При этом не обязательно преобразования приводят к линейным формам. Однако результаты их подготавливают и облегчают процесс выбора аппроксимирующей функции в задачах прогностической экстраполяции. В простейшем случае предлагается использовать следующие три типа дифференциальных функций роста:
1) первая производная, или абсолютная дифференциальная10 функция роста;
2) относительный дифференциальный коэффициент, или логарифмическая производная;
3) эластичность функции.
3.4.Индексный метод - применяется при прогнозировании полезного эффекта, мощностей оборудования каждого вида. Виды укрупненных затрат ресурсов в целом по предприятию. Срок прогнозирования до 5 лет.
Следует отметить, что индексный метод вообще очень широко применяется в прогнозировании социально-экономических явлений и, в частности, деятельности предприятий – для составления прогнозов как объемных, так и качественных показателей (в т.ч. изменения цен, производительности труда, издержек производства и обращения, прибыли и др.).
Этот метод прогнозирования основан на приведении значений показателей объекта в настоящем к будущему моменту при помощи индексов, характеризующих изменение в будущем каких-либо условий по сравнению с настоящими условиями. Математически индексный метод прогнозирования выражается в следующей форме:
Пб = ПнJ1…Jn
(2)
где Пб — показатель на прогнозируемый период; Пн — показатель на текущий момент; J1, J2 … Jn — индексы изменения экономических, организационно-технических и других условий применения объекта (протекания процесса) в прогнозируемом периоде по сравнению с текущим моментом.
3.5.Экспертный метод - применяется при проведении прогнозирования возможных рынков сбыта по данному виду полезного эффекта, сроков обновления выпускаемой продукции, по прочим вопросам маркетинга и технического уровня продукции. Срок прогнозирования не ограничен.
Сущность экспертных методов прогнозирования заключается в выработке коллективного мнения группы специалистов в данной области. Существует несколько различных методов экспертной оценки развития объекта в будущем.
Методы экспертных оценок в прогнозировании
и перспективном планировании научно-технического
прогресса применяются в
а) в условиях отсутствия достаточно представительной и достоверной статистики характеристики объекта (например, лазеры, голографические запоминающие устройства, рациональное использование водных ресурсов на предприятиях);
б) в условиях большой неопределенности среды функционирования объекта (например, прогнозов человеко-машинной системы в космосе или учет взаимовлияния областей науки и техники);
в) при средне- и долгосрочном прогнозировании объектов новых отраслей промышленности, подверженных сильному влиянию новых открытий в фундаментальных науках (например, микробиологическая промышленность, квантовая электроника, атомное машиностроение);
г) в условиях дефицита времени или экстремальных ситуациях.
Экспертная оценка необходима, когда нет надлежащей теоретической основы развития объекта. Степень достоверности экспертизы устанавливается по абсолютной частоте, с которой оценка эксперта в конечном итоге подтверждается последующими событиями. Существует две категории экспертов - это узкие специалисты и специалисты широкого профиля, обеспечивающие формулирование крупных проблем и построение моделей. Выбор экспертов для прогноза производится на основе их репутации среди определенной категории специалистов. Однако не следует забывать и того обстоятельства, что первоклассный специалист не всегда может достаточно квалифицированно рассмотреть и понять общие, глобальные, вопросы. Для этой цели нужно привлекать экспертов хотя и недостаточно узко информированных, но обладающих способностью к дерзанию и воображению.
«Эксперт» в дословном переводе с латинского языка означает «опытный». Поэтому и в формализованном, и в неформализованном способах определения эксперта значительное место занимают профессиональный опыт и развитая на его основе интуиция. Условия необходимости и достаточности отнесения специалиста к категории экспертов вводятся следующим образом.
Важно установить не абсолютную степень надежности экспертной оценки, а степень надежности по сравнению с оценкой среднего специалиста, а также корреляцию между вероятностью его прогнозной оценки и надежностью класса тех гипотез, которыми оперирует эксперт. В общем, нужно определить, что такое эксперт. Перечислим некоторые требования, которым должен удовлетворять эксперт:
1) оценки эксперта должны быть стабильны во времени и транзитивны;
2) наличие дополнительной
3) эксперт должен быть
4) эксперт должен обладать
Характеризуя экспертов, следует иметь в виду, что в результате выработки оценок могут иметь место ошибки двух видов. Ошибки первого вида известны в технике измерений как систематические, ошибки второго вида — как случайные. Эксперт, склонный к ошибкам первого вида, выдает значения, которые устойчиво отличаются от истинного в сторону увеличения или уменьшения. Полагают, что ошибки этого вида связаны со складом ума экспертов. Для коррекции систематических ошибок можно применять поправочные коэффициенты или же использовать специально разработанные тренировочные игры. Ошибки второго вида характеризуются величиной дисперсии. Исходя из анализа основных видов ошибок при вынесении экспертных суждений, можно добавить к рассмотренному ранее перечню требований к экспертам еще одно. Смысл его состоит в том, что следует предпочесть эксперта, оценки которого имеют малую дисперсию и систематическое отклонение средней ошибки от нуля, эксперту со средней ошибкой, равной нулю, но с большей дисперсией. К сожалению, априори определить способность человека делать правильные экспертные оценки невозможно. Важным средством подготовки экспертов являются специальные тренировочные игры.
Организация форм работы эксперта может быть программированной или непрограммированной, а деятельность эксперта может осуществляться в устной (интервью) либо в письменной форме (ответ на вопросы специальных таблиц экспертных оценок или свободное изложение по заданной теме).
Программирование формы работы эксперта предполагает:
Организация стимуляции работы эксперта состоит в разработке:
Исходя из полученной в результате анализа модели объекта прогнозирования, определяются научные и технические направления, по которым необходимо привлечь эксперта, выделяются группы экспертов по принадлежности вопроса к области фундаментальных, прикладных наук или к стыковым научным направлениям.
При решении задачи формирования экспертной группы необходимо выявить и стабилизировать работоспособную сеть экспертов. Способ стабилизации экспертной сети заключается в следующем. На основе анализа литературы по прогнозируемой проблеме выбирается любой специалист, имеющий несколько публикаций в данной области. К нему обращаются с просьбой назвать 10 наиболее компетентных, по его мнению, специалистов по данной проблеме. Затем обращаются одновременно к каждому из десяти названных специалистов с просьбой указать 10 наиболее крупных их коллег-ученых. Из полученного списка специалистов вычеркиваются 10 первоначальных, а остальным рассылаются письма, содержащие указанную выше просьбу. Данную процедуру повторяют до тех пор, пока ни один из вновь названных специалистов не добавит новых фамилий к списку экспертов, т. е. пока не стабилизируется сеть экспертов. Полученную сеть экспертов можно считать генеральной совокупностью специалистов, компетентных в области прогнозируемой проблемы. Однако в силу ряда практических ограничений оказывается нецелесообразным привлекать всех специалистов к экспертизе. Поэтому необходимо сформировать репрезентативную выборку из генеральной совокупности экспертов.
Определение специфики процедур для методов класса ПЭО (персональных экспертных оценок) осуществляется на основе анализа требований к экспертам и их оценкам, вытекающим из сущности методов:
а) аналитические записки
б) парные сравнения, нормирование и ранжирование требуют однородности оцениваемых признаков, наличия логически обоснованных критериев и эталонов, наличие однозначно определенных процедур оперирования с критериями, эталонами и признаками;
в) интервью предъявляют специфические требования как к эксперту, так и к интервьюеру;
г) морфологическая структуризация требует четкого определения функциональных характеристик объекта или проблемы, которые необходимо улучшить, классификации научных принципов, на основе которых возможно улучшение характеристики; анализа всевозможных комбинаций этих принципов и отсева заведомо абсурдных; оценки комбинаций по степени осуществимости и затрат на их реализацию; сравнения комбинаций по комплексному критерию «затраты — эффективность — время».
Основная задача, стоящая перед специалистами по анализу и проектированию больших систем, в общем случае, как правило, заключается в нахождении наиболее оптимальных способов создания более эффективных систем — либо вновь проектируемых, либо модернизируемых. Сложность решения этой задачи состоит, прежде всего в том, что здесь обычно нет возможности найти решение чисто математическими методами, поскольку, как правило, не удается точно определить величины (функционалы), подлежащие оптимизации (экстремализации) в математическом смысле. Это связано не только со сложностью описания функционирования больших систем, но и с такими принципиальными видами, как, например, специфика целей, для достижения которых предназначена система. Во-первых, перед системой может стоять не одна цель, а набор их, что сразу же приводит к задаче векторной оптимизации. Во-вторых, набор целей, поставленных перед системой, может содержать в своем составе чисто качественные цели, не подлежащие практически реализующимся количественным измерениям. Это приводит, с одной стороны, к проблеме оценки степени достижения качественной цели и, с другой - к проблеме соизмерения важности качественных и количественных целей и степени их достижения.
Аналогичная ситуация возникает и при оценке последствий предполагаемого способа достижения поставленной цели. Укажем для примера, что эти последствия могут одновременно носить экономический, политический, социальный или какой-либо другой характер.
Информация о работе Методы прогнозирования управленческих решений