Автор работы: Пользователь скрыл имя, 13 Января 2013 в 14:52, контрольная работа
Полезность выражает степень удовлетворения, получаемого субъектом от потребления товара или выполнения какого-либо действия. Полезность включает важный психологический компонент, потому что люди достигают полезности, получая вещи, приносящие им удовлетворение, и отказываясь от вещей, доставляющих неприятности. В экономическом анализе, однако, полезность чаще всего используется для того, чтобы описать предпочтение при ранжировании наборов потребительских товаров и услуг. Если от покупки трех книг человек более счастлив, чем от приобретения рубашки, то мы говорим, что книги имеют для человека большую полезность, чем рубашка.
Последнее равенство можно преобразовать к виду:
MUX/MUY = -?Y/?X (3.9)
Напомним, что ?X и ?Y выбраны такими, что общая полезность набора остается неизменной. Следовательно:
Список литературы:
1. Пиндайк Р., Рубинфельд Д. Микроэкономика: Сокр. пер. с англ./Науч. ред.:В. T. Борисович, В. M. Полтерович, В. И. Данилов и др. — M.: «Экономика», «Дело», 1992. — 510 с.
2. Кемельбаева С.С.
3. В.М. Гальперин, С.М. Игнатьев, В.И. Моргунов. Микроэкономика
3. Аксиомы порядкового (
Порядковый подход к анализу полезности и спроса является более современным и основывается на гораздо менее жестких предположениях, чем количественный подход. От потребителя не требуется умения измерять полезность того или иного блага в каких-то искусственных единицах измерения. Достаточно лишь, чтобы потребитель был способен упорядочить все возможные товарные наборы по их "предпочтительности".
Порядковый подход базируется на следующих аксиомах.
1. Аксиома полной (совершенной) упорядоченности. Потребитель способен упорядочить все возможные наборы товаров с помощью отношений предпочтения (у) и безразличия (~). Это означает, что для любой пары товарных наборов А и В потребитель может указать, что либо А > В (А предпочтительнее, чем В), либо В > А (В предпочтительнее, чем А), либо А ~ В (А и В равноценны).
Обратим внимание на то, что символы А и В здесь обозначают не отдельные товары, а товарные наборы.
Очевидно, что данная аксиома не является слишком жесткой. Она лишь исключает возможность ответа "не знаю" на вопрос: "Какой из этих двух товарных наборов Вы предпочитаете?". Потребитель может выбрать любой из них либо сказать, что оба представляют для него одинаковую ценность.
2. Аксиома транзитивности. Если А > В > С, или А ~ В> С, или А > В ~ С, то А > С. Эта аксиома гарантирует согласованность предпочтений. Она, например, исключает возможность следующей ситуации: А > В, В > С и одновременно С > А.
Аксиома транзитивности содержит и еще одно утверждение, а именно: если А ~ В и В ~ С, то А ~ С. Однако интерпретация ее сопряжена с известными сложностями. Пусть, например, индивидууму безразлично, положить в стакан чая 6 или 7 г сахарного песку, 7 или 8 г и т.д. Но тогда в силу только что высказанного утверждения ему должно быть безразлично, положить ли в него 6 или , скажем, 100 г сахара, что маловероятно. Парадокс объясняется наличием определенного порога восприятия.[1] Для устранения его может потребоваться привести единицу измерения в соответствие с порогом восприятия (например, измерять песок не граммами, а чайными ложечками).
3. Аксиома ненасыщения. Если набор А содержит не меньшее количество каждого товара, а одного из них больше, чем набор В, то А > В. Таким образом, предполагается, что увеличение потребления любого товара - при фиксированных объемах потребления других товаров - улучшает положение потребителя.
Если перевести эту аксиому на язык количественной теории полезности, то она исключает возможность нисходящей ветви линии TU на рис. 3.1 и отрицательных значений предельной полезности. В принципе теорию потребительского выбора можно построить и без этой аксиомы. Но она значительно упрощает все последующие рассуждения.
4. Аксиома независимости
Это прежде всего означает, что
потребителю не знакомы чувства
зависти и сострадания. В принципе
и от этой аксиомы можно отказаться,
что иногда и делается, в частности
при анализе процессов
В порядковой теории полезности понятие "полезность" означает не более чем порядок предпочтения. Утверждение "Набор А предпочтительнее набора B" эквивалентно утверждению "Набор А имеет большую для данного потребителя полезность, чем набор В". Вопрос о том, на сколько каких-либо единиц полезности или во сколько раз набор А предпочтительнее (или имеет большую полезность), чем набор В, не ставится. Таким образом, задача максимизации полезности сводится к задаче выбора потребителем наиболее предпочтительного товарного набора из всех доступных для него.
В дальнейшем будем рассматривать наборы только из двух товаров - X и Y. Тем не менее основные выводы нетрудно распространить на наборы из любого количества разновидностей товаров.[2]
При порядковом подходе используются кривые и карта безразличия. Кривая безразличия - это множество точек, каждая из которых представляет собой такой набор из двух товаров, что потребителю безразлично, какой из этих наборов выбрать. Если заполнить двухмерную плоскость кривыми безразличия так плотно, как это возможно, получим карту безразличия. На рис. 3.2 товарный набор А включает ХА единиц товара X и YА единиц товара Y, товарный набор В включает ХB единиц товара X и YB единиц товара Y. Если с точки зрения данного потребителя наборы А и В равноценны, то точки А и В лежат на одной и той же кривой безразличия.
Кривые безразличия обладают следующими свойствами.
А. Кривая безразличия, лежащая выше и правее другой кривой, представляет собой более предпочтительные для данного потребителя наборы товаров. Рассмотрим на рис. 3.2 кривые безразличия I и II. Набор С содержит такое же количество товара Y, что и набор А. Но набор С включает в себя большее количество товара X. Из аксиомы о ненасыщении следует, что С > А. Все наборы, лежащие на кривой безразличия I, с точки зрения нашего потребителя равноценны. То же относится и ко всем наборам, лежащим на кривой II. Из аксиомы о транзитивности следует, что любой набор, лежащий на кривой II, для нашего потребителя предпочтительнее любого набора, лежащего на кривой I.
Б. Кривые безразличия имеют
В. Кривые безразличия никогда не пересекаются. Предположим противное. Пусть кривые безразличия I и II на рис. 3.4 пересеклись в точке В. Из аксиомы о ненасыщении следует, что А > С. Наборы В и С лежат на одной кривой безразличия I. Поэтому В ~ С. Наборы А и В лежат на одной кривой безразличия II. Поэтому А ~ В. Из аксиомы о транзитивности следует, что А ~ С. Однако не могут одновременно быть А > С и А ~ С. Следовательно, кривые безразличия не могут пересекаться.
Заметим, что в отличие от непересекающихся прямых, которые должны быть параллельными, кривые могут не пересекаться и не будучи параллельными.
Г. Кривая безразличия может быть проведена через любую точку пространства товаров.
Говорят еще, что кривая безразличия не имеет "толщины". Это свойство любых линий в Евклидовой геометрии, оно является безусловно определенной идеализацией, абстракцией реального мира. Чтобы сделать его более реалистичным, необходимо при выборе единицы измерения товаров учитывать порог восприятия.
Д. Кривые безразличия выпуклы к началу координат. Это свойство в отличие от ранее перечисленных не может быть выведено непосредственно из аксиом рационального поведения. Оно просто отражает принцип диверсификации потребления. Позднее мы вернемся к этому свойству кривых безразличия.
Основным рабочим понятием порядковой теории полезности является предельная норма замещения (MRS; marginal rate of substitution - англ.).
Предельной нормой замещения благом X блага Y(MRSXY) называют количество блага Y, которое должно быть сокращено "в обмен" на увеличение количества блага X на единицу, с тем чтобы уровень удовлетворения потребителя остался неизменным:
Поскольку отношение ?Y/?X по определению отрицательно, минус, вводимый перед правой частью, делает значение нормы замещения положительным.
Пусть потребитель безразличен между наборами А и В (рис. 3.5, а). Значит, норма, по которой он согласен замещать благо Y благом X, оставаясь при этом на одной и той же кривой безразличия, составит:
(OY1 - OY2)/(OY1 - OY2) = - ?Y/?X = -AK/KB
По мере приближения точки А к точке В отношение АК/КВ будет приближаться к наклону касательной в точке В. В пределе в окрестностях В наклон кривой (или касательной) в этой точке и есть предельная норма замещения:
Предельная норма замещения может принимать различные значения, она может быть равна нулю, может быть неизменной или меняться при движении вдоль кривой безразличия. В случае выпуклости к началу координат, как на рис. 3.5, MRS убывает по мере замещения одного блага другим, т.е. потребитель соглашается отдавать все меньшее количество замещаемого блага за одно и то же количество замещающего (аналог убывающей предельной полезности). Так, на рис. 3.5,б потребитель, находясь в точке А, готов уступить Y0Y1 блага Y взамен приращения блага X на X0X1. Однако, располагая набором С, он за равновеликое приращение блага X (X2X3 = X0X1) согласится уступить лишь Y2Y3 блага Y, что меньше Y0Y1
Для двух совершенно взаимозаменяемых
товаров MRS = const. В этом случае кривые
безразличия вырождаются в
Наконец, иногда возможно, что, чем больше какого-то товара имеет потребитель, тем больше он хотел бы иметь его. В этом случае кривая безразличия вогнута к началу координат и норма замещения возрастает (U3U3 на рис. 3.6). Хотя ни один из этих вариантов не может быть исключен, выпуклость кривых безразличия и убывающая норма замещения представляют наиболее общую и распространенную ситуацию. Почему?
Порядковая теория полезности концентрирует
внимание на I квадранте карты безразличия,
представленной на рис. 3.7. В этом квадранте
аксиома ненасыщения
В квадранте II избыточным был бы рост потребления блага Y, в квадранте IV - блага X.
Лишь I квадрант интересовал создателей теории и лишь в I квадранте существует проблема выбора и ее оптимальное решение. Количественная и порядковая теории полезности - это теории, построенные на основе различных предположений о поведении потребителей. Тем не менее в этих теориях можно обнаружить много общего.
В частности, кривые безразличия в порядковой теории можно рассматривать как линии уровня функции общей полезности TU = F(X,Y) в количественной теории.
Предположение об уменьшающейся предельной норме замещения в порядковой теории имеет тот же смысл, что и предположение о понижающейся предельной полезности в количественной теории. Только во втором случае полезность товаров оценивается в ютилах. В первом же случае полезность каждой дополнительной единицы товара оценивается объемом другого товара, которым потребитель согласен пожертвовать.
Кроме того, можно показать, что:
MUX/MUY = MRSXY (3.8)
Увеличим количество товара X в наборе на очень незначительную величину ?X. В результате общая полезность набора увеличится на MUX?X. Определим теперь, на сколько единиц необходимо сократить количество товара Y, чтобы общая полезность товарного набора не изменилась. Для этого MUX?X нужно разделить на MUY:
?Y = MUX?X/MUY
Знак минус необходим, поскольку X и Y меняются в противоположных направлениях.
Последнее равенство можно преобразовать к виду:
MUX/MUY = -?Y/?X (3.9)
Напомним, что ?X и ?Y выбраны такими, что общая полезность набора остается неизменной. Следовательно:
1 В психофизике распространена
концепция дискретности сенсорн
2 Предположение о том, что
существуют лишь два товара, может
показаться слишком жестким.
Список литературы:
1. Пиндайк Р., Рубинфельд Д. Микроэкономика: Сокр. пер. с англ./Науч. ред.:В. T. Борисович, В. M. Полтерович, В. И. Данилов и др. — M.: «Экономика», «Дело», 1992. — 510 с.
2. Кемельбаева С.С. Микроэкономика: учебно-практическое пособие. – Караганда, 2006. – 188 с.
3. В.М. Гальперин, С.М. Игнатьев, В.И. Моргунов. Микроэкономика