Автор работы: Пользователь скрыл имя, 27 Февраля 2013 в 19:55, контрольная работа
Понятия бывают совместимыми и несовместимыми.
Совместимыми называются понятия, объёмы которых имеют общие элементы, каким-либо образом соприкасаются. Например, понятия « спортсмен» и « американец» совместимые, т. к. их объёмы имеют общие элементы или объекты: есть такие спортсмены, которые являются американцами, и наоборот, есть такие американцы, которые являются спортсменами.
Контрольная работа по логике.
Задание № 1
Подберите понятия, находящиеся в отношениях: родовидовых, равнозначности, пересечения, соподчинения, противоположности, противоречия.
Понятия бывают совместимыми и несовместимыми.
Совместимыми называются понятия, объёмы которых имеют общие элементы, каким-либо образом соприкасаются. Например, понятия « спортсмен» и « американец» совместимые, т. к. их объёмы имеют общие элементы или объекты: есть такие спортсмены, которые являются американцами, и наоборот, есть такие американцы, которые являются спортсменами.
Несовместимыми называются понятия, объёмы которых не имеют общих элементов, никаким образом не соприкасаются. Например, понятия « треугольник» и « квадрат» являются несовместимыми, потому что их объёмы не имеют общих элементов: ни один треугольник не может быть квадратом, и наоборот.
Совместимые понятия могут
Понятия находятся в отношении равнозначности в том случае, если их объёмы полностью совпадают. Например, равнозначными будут понятия « квадрат» и « равносторонний прямоугольник», т. к. любой квадрат – это равносторонний прямоугольник, а любой равносторонний прямоугольник – это квадрат. В логике отношения между понятиями принято изображать с помощью круговых схем Эйлера (Леонард Эйлер – известный математик XVIII в.): одно понятие, а вернее его объём, изображается одним кругом, а второе, т. е. его объём, – другим. Взаимное расположение этих кругов на схеме (они могут полностью совпадать, или пересекаться, или не соприкасаться, или один круг может располагаться внутри другого) и показывает то или иное отношение между понятиями. Так, отношение равнозначности между понятиями « квадрат» (К) и « равносторонний прямоугольник» (Р. п.) изображается схемой, на которой два круга, обозначающие два равных объёма, полностью совпадают (рис. 1).
Рис.1
Понятия находятся в отношении
пересечения тогда, когда их
объёмы совпадают только
Рис.2
Понятия находятся в отношении
подчинения в том случае, когда
объём одного из них обязательн
Рис.3
Отношениями равнозначности, пересечения и подчинения исчерпываются все случаи совместимости между понятиями.
Несовместимые понятия могут быть в отношениях соподчинения, противоположности и противоречия.
Понятия находятся в отношении
соподчинения тогда, когда их
объёмы не имеют общих
Рис.4
Понятия находятся в отношении
противоположности в том
Рис.5
Поскольку объёмы
Понятия
находятся в отношении
Рис.6
Отношениями соподчинения, противоположности и противоречия исчерпываются все случаи несовместимости между понятиями.
Итак, в логике выделяется шесть
вариантов отношений между
Любые два сравнимых понятия обязательно находятся в одном из шести указанных случаев отношений. Например, понятия « писатель» и « россиянин» находятся в отношении пересечения, « писатель» и « человек» – подчинения, « Москва» и « столица России» – равнозначности, « Москва» и « Санкт-Петербург» – соподчинения, « мокрая дорога» и « сухая дорога» – противоположности, « Антарктида» и « материк» – подчинения, « Антарктида» и « Африка» – соподчинения и т. д. Надо обратить внимание на то, что если два понятия обозначают часть и целое, например « месяц» и « год», то они находятся в отношении соподчинения, хотя может показаться, что между ними отношение подчинения, ведь месяц входит в год.
Однако если бы понятия «
месяц» и « год» были
Как нам уже известно, отношения
между понятиями изображаются
круговыми схемами Эйлера. Причём
до сих пор мы изображали
схематично отношения между
Например, отношения между понятиями « боксёр» (Б), « негр» (Н) и « человек» (Ч) изображаются следующей схемой Эйлера (рис. 7).
Рис.7
Взаимное расположение кругов показывает, что понятия « боксёр» и « негр» находятся в отношении пересечения: боксёр может быть негром и может им не быть, а негр также может быть боксёром и может им не быть, а понятия « боксёр» и « человек», так же как понятия « негр» и « человек», находятся в отношении подчинения: любой боксёр и любой негр – это обязательно человек, но человек может не быть ни боксёром, ни негром.
Рассмотрим отношения между
Рис.8
Указанные четыре понятия находятся в отношении последовательного подчинения: дедушка – это обязательно отец, а отец – не обязательно дедушка; любой отец – это обязательно мужчина, однако не всякий мужчина является отцом; наконец, мужчина – это обязательно человек, но человеком может быть не только мужчина.
Задание №2
Подберите пять понятий и выполните операцию их деления по одному из оснований; основание деления укажите. Проиллюстрируйте все ошибки, возможные при нарушении правил деления.
Деление понятия– это логическая операция, которая раскрывает его объём.
Деление понятия состоит из трёх частей: делимое понятие, результаты деления, основание деления (признак, по которому производится деление). Например, в следующем делении: « Люди бывают мужчинами и женщинами», – или, что тоже самое: «Люди делятся на мужчин и женщин», – делимым является понятие «люди», результаты деления – это понятия «мужчины» и « женщины», а основание данного деления – пол, т. к. люди в нём разделены по половому признаку. В зависимости от основания деление может быть различным. Например: « Люди бывают высокими, низкими и среднего роста(основание деления – рост)», « Люди бывают монголоидами, европеоидами и негроидами(основание деления – раса)», « Люди бывают учителями, врачами, инженерами и т. д.(основание деления – профессия)». Иногда понятие делится дихотомически(с греч. – пополам) по типу: «A и не A». Например: « Люди бывают спортсменами и не спортсменами». Дихотомическое деление всегда правильное, т. е. в нём автоматически исключаются все возможные в делении ошибки, о которых речь пойдёт ниже.
Мы хорошо знаем, зачем нам нужна операция определения понятия: знакомство с новым предметом начинается с его определения. Теперь ответим на вопрос, какую роль в мышлении и языке выполняет операция деления понятия. Изучая разные науки, вы заметили, что ни одна из них не обходится без различных классификаций: разделений каких-то областей действительности на группы, части, виды и т. п. (классификация растений в ботанике, животных – в зоологии, химических элементов – в химии и т. д.). Однако любая классификация – это не что иное, как логическая операция деления понятия. Классификации могут быть как обширными, подробными, научными, так и простыми, обыденными, повседневными. Когда мы говорим: « Люди делятся на мужчин и женщин» или « Учебные заведения бывают начальными, средними и высшими», – то создаём пусть маленькую и простую, но классификацию. Итак, логическая операция деления понятия лежит в основе любой классификации, без которой не обходится ни научное, ни повседневное мышление.
Существует несколько логических правил деления. Нарушение хотя бы одного из них приводит к тому, что объём понятия не раскрывается и деления не достигает своей цели, являясь неверным. Рассмотрим эти правила и ошибки, возникающие при их нарушении:
1. Деление должно проводиться по одному основанию, т. е. при делении понятия следует придерживаться только одного выбранного признака. Например, в делении: «Люди бывают мужчинами, женщинами и учителями», – используются два разных основания: пол и профессия, что недопустимо. Ошибка, возникающая при нарушении этого правила, называется подменой основания.
В делении с подменой основания могут использоваться не только два разных основания, как в приведённом выше примере, но и больше. Например, в делении: «Люди бывают мужчинами, женщинами, китайцами и блондинами», – использованы три разных основания: пол, национальность и цвет волос, что, конечно же, тоже является ошибкой.
2. Деление должно быть полным, т. е. надо перечислить все возможные результаты деления: суммарный объём всех результатов деления должен быть равен объёму исходного делимого понятия.
Например, деление: «Учебные заведения бывают начальными и средними», – является неполным, т. к. не указан ещё один результат деления – « высшие учебные заведения». Но как быть, если надо перечислять не два или три, а десятки или сотни результатов деления.
В этом случае можно употреблять следующие понятия: и другие, и прочие, и так далее, и тому подобное, которые будут включать в себя не перечисленные результаты деления. Например: «Люди бывают русскими, немцами, китайцами, японцами и представителями других национальностей».
3. Результаты деления не должны пересекаться, т. е. понятия, представляющие собой результаты деления, должны быть несовместимыми, их объёмы не должны иметь общих элементов (на схеме Эйлера круги, обозначающие результаты деления, не должны соприкасаться). Например, в делении: «Страны мира делятся на северные, южные, восточные и западные», допущена ошибка – пересечение результатов деления. На первый взгляд, приведённое деление кажется безошибочным: оно проведено по одному основанию (сторона света) и является полным (все стороны света перечислены). Чтобы увидеть ошибку, надо рассуждать так. Возьмём какую-нибудь страну, например Канаду, и ответим на вопрос, является ли она северной. Конечно, является, т. к. расположена в северном полушарии Земли. А является ли Канада западной страной?
Да, потому что она расположена в западном полушарии. Таким образом получается, что Канада – одновременно и северная, и западная страна, т. е. она является общим элементом объёмов понятий « северные страны» (С) и «западные страны» (З), а значит, эти понятия пересекаются. То же самое можно сказать и относительно понятий «южные страны» (Ю) и «восточные страны» (В). На схеме Эйлера результаты деления из нашего примера будут располагаться так (рис. 9):