Автор работы: Пользователь скрыл имя, 20 Октября 2012 в 11:06, реферат
Подземная нефте-газовая гидродинамика (ПГД)-- наука о движении нефти, воды, газа и их смесей через горные породы, имеющее пустоты, одни из которых называют порами, другие трещинами. Жидкость, газ, смесь жидкости и газа, т.е. всякая текучая среда, часто в зарубежной литературе именуется общим термином флюид, если не ставится задача выделить характерные особенности движения данной среды. Горные породы, которые могут служить хранилищами нефти, газа и отдавать их при разработке носят название коллекторов.
Таким образом, при описании многофазной фильтрации увеличивается число параметров, подлежащих определению. Наряду с неизвестными давлениями pi в фазах и скоростями фильтрации фаз ui появляются новые неизвестные - насыщенности si и концентрации отдельных компонентов. Это усложняет теоретическое исследование.
Будем для простоты рассматривать
совместное изотермическое течение
двух фаз в однородной пористой среде
без фазовых переходов и химиче
Уравнения неразрывности.
первой фазы ; (6.7)
второй фазы ; (6.8)
Если вытесняемая
и вытесняющая фазы - слабосжимаемые
упругие жидкости, то влиянием сжимаемости
на распределение насыщенности можно
пренебречь, так как время
Если жидкости и пористую среду можно предполагать несжимаемыми, то вместо уравнений (6.7) и (6.8) имеем
, . (6.9)
Уравнения движения для многофазной фильтрации. При записи закона фильтрации будем предполагать, что в любой точке каждая из фаз находится в термодинамическо равновесном состоянии. Тогда для течения двухфазной смеси можно ввести в рассмотрение относительные проницаемости ki(s) и капиллярное давление рк (s), зависящее только от насыщенности.
Будем рассматривать только
однонаправленные процессы фильтрации,
не учитывая гистерезисных явлений.
Тогда выполняется закон фильтр
,
а связь между давлениями в фазах определяется равенствами (6.5) и (6.6):
,
Для замыкания полученной системы уравнений необходимо задать связи параметров, характеризующих свойства фаз и пористой среды, с давлением.
Уравнения состояния флюидов. При изотермических условиях фильтрации плотность и вязкость каждой из фаз определяются давлением в данной фазе:
ri=ri(pi), mi=mi(pi),
(i=1,2).
Пласт будем считать недеформируемым.
Таким образом, получена замкнутая система уравнений (6.7), (6.8), (6.10), (9.11) и (9.12) для определения всех неизвестных параметров: насыщенности s, давления pi , скорости фильтрации ui,. плотности ri и вязкости mi фаз.
Постановка и решение задач на основе полной системы уравнений фильтрации неоднородных жидкостей затруднительны ввиду сложности самих уравнений, а также формулировки краевых условий, в частности разрыва капиллярных сил на границах пористой среды (так называемых концевых эффектов), роль которых недостаточно изучена.
Анализ одномерных двухфазных
потоков позволяет выявить
6.4. ОДНОМЕРНЫЕ
МОДЕЛИ ВЫТЕСНЕНИЯ
Наиболее разработана в настоящее время теория одномерного движения двухфазной жидкости в пористой среде. Основные допущения этой теории состоят в следующем:
Полная система уравнений. Основываясь на этих допущениях, выведем полную систему уравнений двухфазной фильтрации в однородной пористой среде с учетом капиллярных и гравитационных сил.
В случае прямолинейно-параллельного течения вдоль оси х (рис.6.3) уравнения неразрывности (6.9) для фаз имеют вид
,
.
Обобщенный закон Дарси (6.10) сводится к уравнениям
,
.
Здесь a - угол наклона оси х к горизонту (см. рис. 6.3); r1 и r2 - плотности фаз.
Неизвестные характеристики течения s, u1, u2, p1 и p2 зависят от координаты х и времени t.
Уравнения (6.12), (6.13) с учетом (6.11) образуют замкнутую систему для случаев линейного течения, являющуюся основой для решения задач вытеснения одной жидкости другой. Характерной особенностью данной системы является то, что её можно свести к одному уравнению для насыщенности. Знание распределения насыщенности в пласте позволяет проанализировать эффективность вытеснения нефти или газа несмешивающейся с ней жидкостью.
Данное уравнение представляет собой сложное нелинейное уравнение параболического типа второго порядка. Точное решение этого уравнения получено лишь для некоторых сравнительно простых частных случаев. Получены инвариантные решения (типа волны, движущейся с постоянной скоростью, и автомодельные), а также некоторые численные решения на ЭВМ.
Начальные и граничные условия. При решении конкретных задач для уравнения изменения насыщенности должны быть сформулированы соответствующие граничные и начальные условия. В качестве начального условия задаются значения неизвестной функции s в зависимости от пространственных координат при t=0. Можно считать, что при t=0 насыщенность всюду постоянна (например, s=s*).
В случае вытеснения нефти водой естественно задать на входе в пласт (нагнетательная скважина или галерея) расход закачиваемой воды и равенство нулю скорости_фильтрации нефти; из последнего условия вытекает (см. формулу (6.13)), что k2=0, следовательно, на этой поверхности s=s*.
На выходе из пласта возможно два варианта граничных условий.
1. Можно пренебречь градиентом капиллярного давления по сравнению с градиентом давления в фазах, т. е. считать, что при x=L, откуда следует, что
при x=L.
2. Экспериментально установлено, что вода не вытекает из гидрофильного пласта, а накапливается в выходном сечении, пока её насыщенность не достигнет значения s*. В момент достижения значения s* вода прорывается из пласта с сохранением на выходе этого значения насыщенности. Это явление получило название концевого эффекта. Математически оно приводится к сложному нелинейному граничному условию на выходе.
Остановимся на двух наиболее изученных моделях двухфазной фильтрации.
Модель Рапопорта—Лиса. Для прямолинейно-параллельного вытеснения уравнение для насыщенности без учета силы тяжести было впервые получено в 1953 г. американскими исследователями Л. Рапопортом и В. Лисом. Поэтому модели двухфазной фильтрации с учетом капиллярных эффектов называют обычно моделями Рапопорта—Лиса.
Дифференциальное уравнение для насыщенности в данной модели – параболического типа и решается разностным методом.
Модель Баклея—Леверетта. Без учета капиллярных сил двухфазная фильтрация для случая прямолинейно-параллельного вытеснения рассматривалась С. Баклеем и М. Левереттом в 1942 г., а позже независимо от них А. М. Пирвердяном, исследовавшим также случай более общего закона фильтрации при двухфазном течении.
Задачи двухфазной фильтрации без учета капиллярных сил известны как задачи (модель) Баклея - Леверетта. Задачи вытеснения такого типа в одномерной постановке изучены достаточно полно.
Уравнение насыщенности задач данного типа принадлежит к классу квазилинейных гиперболических уравнений первого порядка, которые обычно решаются методом характеристик и имеют свои существенные особенности, при решении по сравнению с параболическими уравнениями.
В случае одномерного течения
несжимаемых несмешивающихся
Для обоих случаев одномерного потока (прямолинейно-параллельного и плоскорадиального) это приводит к классической в теории вытеснения модели Баклея—Леверетта.
В рассматриваемом случае важное значение имеет так называемая функция Баклея - Леверетта или функцией распределения потоков фаз f(s), которая имеет простой физический смысл. Действительно, данная функция представляет собой отношение скорости фильтрации вытесняющей фазы к суммарной скорости и равна объемной доле потока вытесняющей жидкости (воды) в суммарном потоке двух фаз. Таким образом функция Баклея - Лаверетта определяет полноту вытеснения и характер распределения газоконденсатонасыщенности по пласту. Задачи повышения нефте- и газоконденсатоотдачи в значительной степени сводятся к применению таких воздействий на пласт, которые в конечном счете изменяют вид функции f(s) в направлении увеличения полноты вытеснения.
Вид кривых функции f(s) и ее производной f/(s) показан на рис.6.5. С ростом насыщенности f(s) монотонно возрастает от 0 до 1. Характерной особенностью графика f(s) является наличие точки перегиба sп , участков вогнутости и выпуклости, где вторая производная f//(s) соответственно больше и меньше нуля. Эта особенность в большой степени определяет специфику фильтрационных задач вытеснения в рамках модели Баклея—Леверетта.
Зависимость функций f(s) и f/(s) от отношения вязкостей фаз m0=m1/ m2 показана рис. 6.6. Из данного рисунка следует, что с ростом отношения вязкостей кривая f(s) сдвигается вправо и эффективность вытеснения возрастает. Например, применение пен и загустителей, повышающих вязкость нагнетаемой воды, может значительно увеличить нефтеотдачу.
Физической особенностью модели двухфазного вытеснения Баклея – Леверетта является зависимость скорости распространения того или иного значения насыщенности от величины этой насыщенности. Это явление называется дисперсией волн. При 0£s£sп большие насыщенности распространяются с большими скоростями, а при sп<s£1 скорость распространения постоянного значения насыщенности начинает уменьшаться. Последнее приводит к тому, что, начиная с некоторого момента времени, распределение насыщенности оказывается многозначным (рис.6.7, кривая 1-2-3-4-5). В области данного участка одному и тому же значению х соответствуют три значения насыщенности s: s1, s2 и s3, что физически невозможно, так как в каждом сечении пласта в любой момент времени может существовать только одна насыщенностью Данная неоднозначность устраняется введением скачка насыщенности (рис.6.7, отрезок 1-3-5). Скорость распространения скачка при этом равна скорости распространения насыщенности. Необходимо отметить, что в действительности математический скачок насыщенности не имеет места. Он появляется в решении вследствие пренебрежения капиллярными силами, за счет которых появляется некоторая “переходная зона” вблизи фронта вытеснения, в которой насыщенность изменяется непрерывно.
Точные решения задачи о вытеснении нефти (или газа) водой применяются при оценочных инженерных расчетах параметров разработки с использованием процесса заводнения.
В общем случае неодномерного вытеснения, а также при учете сжимаемости одной из фаз рассмотренная задача уже не сводится к одному уравнению для насыщенности. Необходимо совместно определять давление и насыщенность. Численные решения таких задач могут быть получены лишь на ЭВМ.
Учет капиллярного скачка давления рк, который задается в виде известной эмпирической функции насыщенностей, приводит к теории следующего приближения – модели Рапопорта – Лиса. При этом пренебрегаем силой тяжести.
Действие капиллярных сил проявляется в основном вблизи фронта вытеснения, где градиенты насыщенности велики. Эти силы приводят к “размазыванию” фронта, поэтому при учете капиллярных сил скачок насыщенности отсутствует и насыщенность изменяется непрерывно.