Автор работы: Пользователь скрыл имя, 20 Октября 2012 в 11:06, реферат
Подземная нефте-газовая гидродинамика (ПГД)-- наука о движении нефти, воды, газа и их смесей через горные породы, имеющее пустоты, одни из которых называют порами, другие трещинами. Жидкость, газ, смесь жидкости и газа, т.е. всякая текучая среда, часто в зарубежной литературе именуется общим термином флюид, если не ставится задача выделить характерные особенности движения данной среды. Горные породы, которые могут служить хранилищами нефти, газа и отдавать их при разработке носят название коллекторов.
.
Из данных зависимостей следует,
что с увеличением числа эксплу
При разработке нефтегазовых месторождений часто возникают неустановившиеся процессы, связанные с пуском или остановкой скважин, с изменением темпов отбора флюидов из скважин. Характер этих процессов проявляется в перераспределении пластового давления, в изменениях во времени скоростей фильтрации, дебитов скважин и т.д. Особенности данных процессов зависят от упругих свойств пластов и жидкостей, т.е. основная форма пластовой энергии - энергия упругой деформации жидкостей и материала пласта. При этом предполагается, что фильтрационный поток однофазный.
Упругий режим характеризуется двумя особенностями:
При упругом режиме движение возникает в призабойной зоне в начале эксплуатации скважины за счет использования потенциальной энергии упругой деформации пласта и жидкости и только через некоторое время оно распространяется на более отдалённые области.
При снижении пластового давления объём сжатой жидкости увеличивается, а объём порового пространства сокращается за счет расширения материала пласта. Всё это способствует вытеснению жидкости из пласта в скважину.
В ряде случаев приток жидкости поддерживается за счет напора воды, поступающей извне. Такой режим называется упруго-водонапорным.
Если залежи нефти ограничены либо зонами выклинивания, либо экранами, то режим называется замкнуто-упругим. В начальной стадии разработки такой залежи, до тех пор пока пластовое давление не снизилось ниже давления насыщения, имеет место замкнуто-упругий режим фильтрации.
Если вытеснение жидкости
из пласта происходит не под действием
преобладающего влияния упругости
пласта и жидкости, то упруго-водонапорный
режим переходит жестко-
Неустановившиеся процессы
протекают тем быстрее, чем больше
коэффициент проницаемости
Важнейшими параметрами теории упругого режима являются коэффициенты объёмной упругости жидкости и пласта.
Коэффициент объёмной упругости жидкости bж характеризует податливость жидкости изменению её объёма и показывает, на какую часть первоначального объёма изменяется объём жидкости при изменении давления на единицу
,
где tж - объём жидкости; знак минус указывает на то, что объём tж увеличивается с уменьшением давления; bж нефти находится в пределах (7-30)10-10м2/н; bж воды находится в пределах (2,7-5)10-10м2/н.
Коэффициент объёмной упругости пласта определяется по формуле
,
где tп - объём пласта; m - пористость; b с слабо и сильно сцементированных горных пород находится в пределах (0,3-2)10-10м2/н.
Большое значение в практике добычи нефти и подсчета её запасов имеет величина упругого запаса выделенной области пласта, соответствующая заданному падению давления. По Щелкачеву упругий запас - это количество жидкости, высвобождающейся в процессе отбора из некоторой области пласта при снижении пластового давления до заданной величины, если высвобождение происходит за счет объёмного расширения жидкости и уменьшения порового пространства пласта.
Обозначая упругий запас через Dtз , получим по определению
Dtз=bжt0жDр+bсt0Dр,
где t0ж - объём жидкости, насыщающей элемент объёма пласта t0 при начальном давлении р0; Dр - изменение давления.
Так как t0ж=mt0, то
Dtз=b*t0Dр.
Здесь b*=mbж+bс - коэффициент упругоёмкости пласта, показывающий долю объема жидкости от выделенного элемента объема пласта, высвобождающейся из элемента пласта при снижении давления на единицу.
Вскрытие пласта и изменение режима работы скважины вызывает возмущение в пласте. От источника возмущения оно передаётся во все стороны пласта с какой-то скоростью. Скорость распространения изменения изменения пластового давления характеризуется коэффициентом пьезопроводности пласта
.
В коллекторах – 1000см2/с£k£50000см2/c или 0.1м2/с£k£5м2/c.
Степень нестационарности процессов определяется безразмерными параметрами Фурье:
где t - время.
Считаем, что течение происходит по закону Дарси, и уравнение состояния упругой жидкости в линеаризированной постановке, которое получим из соотношения (2.27) разложением экспоненты в ряд Тейлора, имеет вид
,
а также изменение пористости в зависимости от давления, полученное линеаризацией соотношения (2.34), описывается зависимостью
.
Из (5.9) и очевидного соотношения имеем следующее дифференциальное уравнение для пористости, при пренебрежении членом, содержащим произведение bжbс
.
В тоже время из общего уравнения фильтрации (2.8) .
Приравнивая правые части, с учетом выражения для потенциала , и пренебрегая членом, содержащим (р-р0)2, получим
.
Уравнение типа (5.11) известно
под названием уравнения
5.1.4.1. Вывод основного уравнения упругого режима
Считаем пласт упругим, горизонтальным и большой протяженности и в нём имеется одна скважина, тогда движение жидкости в пласте можно считать плоскорадиальным к точечному стоку (эксплуатационная скважина) или от точечного источника (нагнетательная скважина).
Рассмотрим процесс
.
Предположим, что возмущение вызвано мгновенным стоком, существовавшим в момент t=t/ . Для этого случая решение уравнения (5.12) имеет вид
,
где А и С - некоторые постоянные.
Найдём значения постоянных. Для этого будем считать, что в момент времени t=t/ давление в пласте было р=рк=const. Тогда при r>0 и при t=t/ второй член правой части обращается в неопределённость типа ¥/¥ и определяется по правилу Лапиталя, что даёт С=рк Таким образом,
,
Для определения коэффициента А воспользуемся соотношением (5.4) для определения объёма высвобождающейся жидкости для случая кольцевого элемента пласта с внутренним радиусом r, толщиной h и шириной dr, а также учтем падение давления Dр=p0-p по (5.14)
dtз=b*Dрdt0=
.
.
После интегрирования (5.15) в пределах от 0 до ¥ получим объём жидкости t2 , выделившейся из всего пласта и, следовательно, определим коэффициент А
.
Т.о. в случае скважины, введенной в неограниченный пласт в некоторый (начальный) момент времени и действующей мгновенно, изменение давления во времени определяется соотношением
,
Если скважина была введена в некоторый момент времени и действовала непрерывно с постоянным дебитом Q=Q0 в течении времени dt/, то за этот промежуток времени через сток выделяется из пласта объём dt2=Qdt/ и, следовательно, из (5.17) следует
,
Интеграл правой части носит название интегрально-показательной функции
и с учетом данного
обозначения решение для
,
Формула (5.19) является основной формулой теории упругого режима пласта.
Интегрально-показательная функция имеет вид (рис.5.1) и обладает следующими свойствами:
Для малых значений u<1 можно принять
Так погрешность применения (5.21) не превышает 0,25% при u<0,01; 5,7% - при u<0,1
.
С учетом соотношения (5.21) основное уравнение (5.19 перепишется в виде
,
Полученную зависимость можно использовать при числе Фурье с погрешностью не превышающей 0,6%. Практически это означает, чтоуже через 1 с после пуска скважины расчеты забойного давления, выполненные по формуле (5.23), будут иметь погрешность не превышающую 0,6%. Формулу (5.23) можно использовать и для расчета падения давления в конечном пласте, а именно, погрешность расчета давления при этом не превышает 1% , если rк>1000rc и fo<3,5.105 или Fo<0,35.
Рассмотрим пьезометрические кривые для бесконечного пласта, который эксплуатируется скважиной радиуса rc c постоянным дебитом Q0 (рис.5.2). Для точек вблизи забоя можно пользоваться формулой (5.23): дифференцируя её по координате r, найдём градиент давления
.
Из этой формулы следует, что градиент давления для значений r, удовлетворяющих неравенству r2<<0,03.4kt, практически не завист от времени и определяется по той же формуле, что для установившейся плоскорадиальной фильтрации несжимаемой жидкости. Для указанных значений r пьезометрические кривые представляют собой логарифмические линии (рис.5.2). Углы наклона касательных на забое скважины одинаковы для всех кривых.