Преемственность в изучении геометрических построений

Автор работы: Пользователь скрыл имя, 18 Февраля 2012 в 20:09, дипломная работа

Описание

Объект исследования: изучение геометрического материала в ДОУ и начальной школе;

Предмет исследования: преемственность в изучении геометрических построений в ДОУ и начальной школе;

Цель исследования: выявить условия соблюдения преемственности в изучении геометрических построений в ДОУ и начальной школе, эффективно влияющие на результативность обучения;

Работа состоит из  1 файл

диплом.doc

— 546.50 Кб (Скачать документ)

Методика изучения может быть такой:

    1. Подготовительный этап.

Учитель на доске  чертит различные линии и отрезок  и просит учащихся установить есть ли разница между этими линиями, чем они отличаются. Дети делают вывод, что на доске есть прямая, которая ограничена с двух сторон точками.

    1. На основном этапе учитель сообщает, что эта часть прямой, которая ограничена с двух сторон точками, называется отрезок. После получения наглядной модели они показывают, какие предметы в классе имеют вид отрезка (указка, край стола и т.д.). После этого они чертят отрезок.

Отмечают две  точки, прикладывая к ним линейку, соединяют их линией и получают отрезок.

Во 2-м классе, после изучения понятия отрезка полезно выполнять следующие упражнения:

    1)      Отметь на бумаге 3 точки и соедини их попарно отрезками. Сколько отрезков получится?

В ходе изучения геометрических фигур точка и  отрезок приобретают другие свойства: они становятся их вершиной, стороной и т.д.

В третьем классе рассматривают модели треугольника, четырёхугольника и т.д., называют их одним словом многоугольники, т.е. делают обобщение.

Методика может  быть такой:

  1. Подготовительный этап.

Учитель уточняет знания учащихся о таких фигурах как треугольник, четырёхугольник и т.д. С этой целью следует использовать наглядные пособия: вырезать из цветной бумаги и прикрепить на доске несколько треугольников и четырёхугольников. Обратить внимание детей на то, что у всех этих фигур не по одному углу, а несколько. Необходимо чтобы дети пришли к выводу что все эти фигуры можно объединить в одну группу.

  1. Основной этап. Учитель вводит понятие многоугольника.
  2. Закрепление материала.

После ознакомления с многоугольниками учащиеся в окружающей обстановке называют или показывают предметы, имеющие форму соответствующего многоугольника. Полезно предлагать упражнения такого вида:

    1)      Какие фигуры изображены на рисунке?

Первые сведения об углах учащиеся получают в процессе работы с многоугольниками.

1.Подготовительный  этап:

На этом этапе  повторяется ранее полученные знания о многоугольниках. Учитель обращает внимание детей на то, почему все  фигуры объединены в одну группу –  многоугольники.

2.На основном  этапе учитель вводит понятие  «угол». Строит угол и поясняет, что угол образуют две стороны и вершина, где соединяются эти стороны.

Для ознакомления с прямым углом демонстрируем  модели прямоугольника, четырёхугольника, с тупым и острым углом. Выясняем, что прямой, тупой, острый углы –  разные.

Рекомендуется учащимся самим получить прямой угол перегибанием листа бумаги: они дважды перегибают лист бумаги пополам.

Учащимся показывается чертёжный треугольник с прямым углом и наложением прямого угла на разные углы показывается, как определить прямой угол.

Предлагается  назвать предметы, имеющие прямой угол.

С помощью модели прямого угла учащиеся проверяют, что  углы клетки на странице тетради –  прямые. Поэтому прямой угол можно  нарисовать используя разлиновку листа  тетради.

Учащиеся под  руководством учителя чертят прямой угол.

3. Для закрепления  понятия прямого угла предлагаются  задания:

1) Найдите прямые  углы в предложенных многоугольниках  (предлагаются модели, чертежи);

2) Начертите  треугольник, имеющий прямой угол.

После усвоения понятия прямого угла, учащиеся знакомятся с прямоугольником, как с четырёхугольником, у которого все углы прямые.

Методика:

  1. Подготовительный этап.

Учитель использует наглядные пособия: вырезанные из бумаги четырёхугольники, среди которых 2-3 прямоугольника, а остальные имеют по одному прямому углу, или 2 прямых угла, либо ни одного прямого угла.

  1. Основной этап.

Детям предлагается установить с помощью угольника, в каких четырёхугольниках есть прямые углы. В результате такой  работы они увидят, что четырёхугольники могут иметь один прямой угол, два или все четыре прямых угла. Учитель сообщает, что четырёхугольник у которого все углы – прямые, называется прямоугольником.

Построение прямоугольника целесообразно предложить после  установления свойств  прямоугольника.

3. На этапе закрепления учащимся предлагаются такие упражнения:

1) Какие из  изображённых фигур являются  прямоугольниками?

2)Постройте прямоугольник  со сторонами 2 и 4 сантиметра.

Методика ознакомления с квадратом аналогична методике ознакомления с прямоугольником. В  этом случае ,из  перечисленных, выбирают тот, у которого все стороны равны. Это и есть квадрат.

Окружность и  круг, как геометрические фигуры, на уроках математики по программе Моро рассматривается в 3-м классе. И  здесь, используя, практическую  работу и метод работы с учебником учащиеся усваивают основные термины: окружность – граница круга, центр окружности и круга, радиус и диаметр окружности и круга. 

Рассмотрим методику изучения геометрического материала  по программе Н.Б. Истоминой. (УМК «Гармония») 

В 1-м классе изучение геометрического материала начинается с изучения форм предметов.

Подготовительной  работой является работа с наглядными пособиями.

Например, необходимо определить какой предмет «лишний»?

На основном этапе учитель сообщает, что окружающие нас предметы имеют разную форму.

На этапе закрепления  предлагают задания:

1) Чем похожи  предметы?

2) Чем отличаются?

Далее происходит знакомство детей с прямой и кривой линиями и лучом.

Подготовительный  этап заключается в том, что учитель  предлагает сравнить линии, установить,  чем они похожи.

Затем учитель  сообщает, что есть линии прямые и кривые и учит их строить. Следит за речью учащихся. Дети выполняют  задания:

«Учись  проводить прямые линии».

Поставь в тетрадь  точку. Проведи через неё три  прямые линии.

На этапе закрепления  предаются задания : «по какому признаку можно разбить линии на 2 группы?»

Каких линий  больше: прямых или кривых?

Отрезок.

Методика может  быть такой.

Подготовительный  этап:

Поставь в тетради  две точки и соедини их по линейке.

На основном этапе учитель сообщает, что у нас получился отрезок.

Для закрепления  даются задания на построение отрезков различной длины.

По программе  Истоминой дети в 1-м классе знакомятся с ломаной.

«Чем  похожи и чем отличаются эти фигуры»

Какую из них  можно назвать ломаной.

Чтобы проверить, как дети усвоили материал, учитель  даёт задание:

«Назови лишнюю фигуру».

Во 2-м классе изучение геометрического материала  начинается с угла.

Сначала учитель  строит угол на доске и объясняет  свои действия. Затем сообщает, что  у нас получился угол.

На основном этапе он говорит, что у нас  получился угол фигура, которая называется углом. Лучи – это стороны угла, точка, из которой проводятся лучи –  вершина угла. На этом же этапе учащиеся делают модель прямого угла.

На закрепительном этапе дети выполняют задания:

«Постройте  прямой угол»

«Постройте  острый угол»

Во втором классе происходит знакомство с прямоугольником  и квадратом.

Детям предлагается из большого числа геометрических фигур  выбрать фигуры с прямыми углами.

Далее учитель  сообщает, что четырёхугольники, у которых все углы прямые это прямоугольники.

Учащиеся могут  измерить стороны прямоугольников, и обнаружить, что есть прямоугольники, у которых все стороны одинаковой длины. Учитель говорит, что это  квадраты.

Детям предлагается набор фигур, у которых разное количество углов. Дети считают углы и догадываются, что у всех этих фигур разное количество углов и значит они называются по разному.

Все эти фигуры – многоугольники. На закрепительном этапе они выполняют задания:

«Какие  фигуры можно назвать прямоугольником? Квадратом? Многоугольниками?

Во втором же классе изучается окружность. Учитель  предлагает 2 рисунка и предлагает установить, чем похожи, и чем  отличаются.

На основном этапе учитель даёт определение  окружности. Замкнутая кривая называется окружностью, если все точки, отмеченные на замкнутой кривой, находятся на одинаковом расстоянии от центра окружности.

Закрепительный  этап: выберите рисунок, на котором  все точки линии находятся  на одинаковом расстоянии от точки  О ?

В 3-м классе сами геометрические фигуры на изучаются , а изучается только площадь фигур.

В четвёртом  классе геометрический материал изучается  мало. Рассмотрим часть занятия по учебнику «Математика. 3 класс, часть 1». Авторы: М.И. Моро и др. Тема «Путешествие по стране Геометрии».

Тип занятия: игра - викторина « Геометрические фигуры»

Технологии: компетентностно - ориетированная, игровая.

Цель занятия: закрепление умения решать задачи геометрического  характера.

Задачи занятия:

образовательные:

1) обобщить знания  о геометрических фигурах;

2) закрепить  умения строить рисунки на  компьютере;

воспитательные:

1) развивать  умения работать в группе;

2) воспитывать  уважение к мнению товарища;

развивающие:

1) развивать  пространственное мышление и  фантазию

Оборудование: листы ватмана, линейки, карандаши, диск «Геометрические сказки», рисунки, компьютеры, мультимедиапроектор.

Ход занятия

І. Организационная  часть.

Весь класс  делится на три команды (красная, желтая, зелёная) с помощью Цветика  – трёхцветика: каждый ученик наугад выбирает листок с цветом своей команды.

ІІ. Тема и цель.

Учитель. Мы с  вами отправляемся в путешествие  по стране «Геометрия» В этой стране нам встретятся известные и неизвестные  герои. Мы будем совершать открытия, и помогать друзьям. Готовы ли вы к  приключениям?

Тогда в путь!

Наше путешествие  будет продолжаться 3 занятия.

ІІІ. Основная часть. Первое занятие - игра-викторина «Геометрические  фигуры» Жюри оценит все работы и  выявит победителей по номинациям. (Слайд №1)

Учитель. На учительском  столе стоит подставка для канцтоваров. Самые важные среди них - простой Карандаш и его подруга – ластик по имени Чистюлька, которые чаще всего используются на уроках. Они много работают с утра до обеда, помогая ученикам справляться с различными заданиями. А чем они занимаются после?..

Оказывается, в  наше отсутствие происходит много чудес. Однажды вот что случилось…

(Просмотр сказки  « Карандаш и Чистюлька»)

Учитель. С новыми друзьями мы должны попасть в страну Геометрию. Фея Геометрии хочет  проверить ваши знания с помощью кроссворда.

Задание I Кроссворд (слайды №3-5)

По горизонтали:

1) прямоугольник,  у которого все стороны равны;

Информация о работе Преемственность в изучении геометрических построений