Автор работы: Пользователь скрыл имя, 06 Февраля 2013 в 08:23, курс лекций
Важнейшим этапом исследования социально-экономических явлений и процессов является систематизация первичных данных и получение на этой основе сводной характеристики объекта в целом при помощи обобщающих показателей, что достигается путем сводки и группировки первичного статистического материала.
1. Статистическая сводка и группировка
2. Статистические таблицы
3. Формы выражения статистических показателей
4. Показатели вариации и анализ частотных распределений
5. Выборочное наблюдение
6. Экономические индексы
Список литературных источников
С вероятностью 0,954 определите пределы средней месячной заработной платы всех сотрудников гостиниц.
5.16. При обследовании семейных
бюджетов населения города
Группы населения по семейному положению |
Объем выборки |
Доля расходов на оплату жилья, % |
Одинокие Семейные |
35 115 |
9 6 |
С вероятностью 0,683 установите границы доли расходов на оплату жилья населением города.
5.17. В распоряжении организатора
выборочного обследования
Типические группы магазинов |
Численность групп |
Дисперсия товарооборота |
Продовольственные Непродовольственные |
650 350 |
1,2 0,7 |
6. ЭКОНОМИЧЕСКИЕ ИНДЕКСЫ
МЕТОДИЧЕСКИЕ УКАЗАНИЯ И РЕШЕНИЕ
ТИПОВЫХ ЗАДАЧ
Экономический индекс – это относительная величина, которая характеризует изменение исследуемого явления во времени, в пространстве или по сравнению с некоторым эталоном (планируемым, нормативным уровнем и т.п.). Если в качестве базы сравнения используется уровень за какой-либо предшествующий период, то получают динамический индекс; если же базой является уровень того же явления по другой территории – территориальный индекс. Индексы являются незаменимым инструментом исследования в тех случаях, когда необходимо сравнить во времени или в пространстве две совокупности, элементы которых являются несоизмеримыми величинами.
Изучение данной темы должно базироваться на знании предшествующих разделов курса, особенно тем «Формы выражения статистических показателей» и «Статистическое изучение динамики социально-экономических явлений».
Индивидуальные индексы и сводные индексы в агрегатной форме. Простейшим показателем, используемым в индексном анализе, является индивидуальный индекс, который характеризует изменение во времени (или в пространстве) отдельных элементов той или иной совокупности. Так, индивидуальный индекс цены рассчитывается по формуле
где p1 – цена товара в текущем периоде;
p0 – цена товара в базисном периоде.
Например, если цена товара А в текущем периоде составляла 30 руб., а в базисном 25 руб., то индивидуальный индекс цены
В данном примере цена товара А возросла по сравнению с базисным уровнем в 1,2 раза или на 20%.
Оценить изменение объемов
продажи товара в натуральных
единицах измерения позволяет индивидуал
где q1 – количество товара, реализованное в текущем периоде;
q0 – количество товара, реализованное в базисном периоде.
Изменение объема реализации товара в стоимостном выражении отражает индивидуальный индекс товарооборота:
Индивидуальные индексы, в сущности, представляют собой относительные показатели динамики или темпы роста и по данным за несколько периодов времени могут рассчитываться в цепной или базисной формах.
Сводный индекс – это сложный относительный показатель, который характеризует среднее изменение социально-экономического явления, состоящего из непосредственно несоизмеримых элементов. Исходной формой сводного индекса является агрегатная.
При расчете агрегатного
индекса для разнородной
На величину данного индекса оказывают влияние как изменение цен на товары, так и изменение объемов их реализации. Для того чтобы оценить изменение только цен (индексируемой величины), необходимо количество проданных товаров (веса индекса) зафиксировать на каком-либо постоянном уровне. При исследовании динамики таких показателей, как цена, себестоимость, производительность труда, урожайность, количественный показатель обычно фиксируют на уровне текущего периода. Таким способом получают сводный индекс цен (по методу нди)*:
Числитель данного индекса содержит фактический товарооборот текущего периода. Знаменатель же представляет собой условную величину, показывающую, каким был бы товарооборот в текущем периоде при условии сохранения цен на базисном уровне. Поэтому соотношение этих двух категорий и отражает имевшее место изменение цен.
Третьим индексом в данной индексной системе является сводный индекс физического объема реализации. Он характеризует изменение количества проданных товаров не в денежных, а в физических единицах измерения:
Весами в данном индексе выступают цены, которые фиксируются на базисном уровне.
Между рассчитанными индексами существует следующая взаимосвязь:
Пример. Имеются следующие данные о реализации плодородной продукции в области (табл. 5.1).
Реализация
плодово-ягодной продукции в
Наименование товара |
Июль |
Август |
Расчетные графы, руб. | ||||
Цена за кг, p0, руб. |
Продано, q0, т |
Цена за кг, p1, руб. |
Продано, q1, т |
p0q0 |
p1q1 |
p0q1 | |
Черешня Персики Виноград |
12 11 9 |
18 22 20 |
12 10 7 |
15 27 24 |
216 242 180 |
180 297 168 |
180 297 216 |
Итого |
´ |
´ |
´ |
´ |
638 |
618 |
693 |
Рассчитать индекс товарооборота.
Решение.
Мы получили, что товарооборот в целом по данной товарной группе в текущем периоде по сравнению с базисным уменьшился на 3,1% (100 – 96,9). Отметим, что объем товарной группы при расчете этого и последующих индексов значения не имеет.
Вычислим сводный индекс цен:
По данной товарной группе цены в августе по сравнению с июлем в среднем снизились на 10,8%.
Числитель и знаменатель
сводного индекса цен можно
Индекс физического объема реализации составит:
Физический объем реализации (товарооборота) увеличился на 8,6%.
Используя взаимосвязь индексов, проверим правильность вычислений:
Мы рассмотрели применение агрегатных индексов в анализе товарооборота и цен. При анализе результатов производственной деятельности промышленного предприятия приведенные выше сводные индексы соответственно называются индексом стоимости продукции, индексом оптовых цен и индексом физического объема продукции.
Рассмотрим применение индексного метода в анализе изменения затрат на производство и себестоимости продукции.
Индивидуальный индекс себестоимости характеризует изменение себестоимости отдельного вида продукции в текущем периоде по сравнению с базисным:
Для определения общего изменения уровня себестоимости нескольких видов продукции, выпускаемых предприятием, рассчитывается сводный индекс себестоимости. При этом себестоимость взвешивается по объему производства отдельных видов продукции текущего периода:
Числитель этого индекса отражает затраты на производство текущего периода, а знаменатель – условную величину затрат при сохранении себестоимости на базисном уровне. Разность числителя и знаменателя показывает сумму экономии предприятия от снижения себестоимости:
Сводный индекс физического объема продукции, взвешенный по себестоимости, имеет следующий вид:
Третьим показателем в данной индексной системе является сводный индекс затрат на производство:
Все три индекса взаимосвязаны между собой:
Еще одна область применения индексного метода – анализ изменений в производительности труда. При этом возможны два подхода к расчету индексов. Первый подход основан на учете количества продукции W, вырабатываемого в единицу времени. При таких расчетах необходимо решить ряд методологических проблем – какой именно показатель продукции использовать, как оценивать продукцию работников сферы услуг и пр.
При втором подходе производительность труда определяется затратами рабочего времени I на единицу продукции. На практике эти расчеты также сопряжены с определенными трудностями, так как не всегда имеется возможность оценить вклад конкретного работника в производство того или иного изделия.
Количество продукции, вырабатываемое в единицу времени (в натуральном выражении), и затраты времени на единицу продукции взаимосвязаны между собой:
Например, если работник на каждое изделие затрачивает 15 мин. (I = 0,25 ч), то за час его выработка составит 4 изделия. Отметим, что выработка может измеряться не только в натуральном, но в стоимостном выражении (рq).
Индивидуальные индексы производительности труда, основанные на этих показателях, имеют следующий вид:
где Т – суммарные затраты времени на выпуск данной продукции в человеко-часах, человеко-днях или человеко-месяцах (в последнем случае соответствует общей численности работников).
Трудоемкость является обратным показателем, поэтому снижение трудоемкости в текущем периоде по сравнению с базисным свидетельствует о росте производительности труда.
Располагая данными о трудоемкости различных видов продукции и объемах их производства, можно рассчитать сводный индекс производительности труда (по трудоемкости):
Знаменатель этого индекса отражает реально имевшие место общие затраты времени на выпуск всей продукции в текущем периоде (t1). Числитель представляет собой условную величину, показывающую, какими были бы затраты времени на выпуск этой продукции, если бы трудоемкость не изменилась.
Сводные индексы в средней арифметической и средней гармонической формах. В ряде случаев на практике вместо индексов в агрегатной форме удобнее использовать средние арифметические и средние гармонические индексы. Любой сводный индекс можно представить как среднюю взвешенную из индивидуальных индексов. Однако при этом форму средней нужно выбрать таким образом, чтобы полученный средний индекс был тождествен исходному агрегатному индексу.
Предположим, мы располагаем данными о стоимости проданной продукции в текущем периоде (p1q1|) и индивидуальными индексами цен полученными, например, в результате выборочного наблюдения. Тогда в знаменателе сводного индекса цен можно использовать следующую замену:
Таким образом, сводный индекс цен будет выражен в форме средней гармонической из индивидуальных индексов:
Таблица5.2
Реализация овощной продукции
Товар |
Реализация в текущем периоде, руб. |
Изменение цен в текущем периоде по сравнению с базисным, %
iq×100% - 100% |
Расчетные тарифы | |
ip |
||||
Морковь Свекла Лук |
23000 21000 29000 |
+4,0 +2,3 -0,8 |
1,040 1,023 0,992 |
22115 20528 29234 |
Итого |
73000 |
´ |
´ |
71877 |