Методы оценки инвестиционных проектов

Автор работы: Пользователь скрыл имя, 14 Декабря 2011 в 11:39, курсовая работа

Описание

Главным направлением предварительного анализа является определение
показателей возможной экономической эффективности инвестиций, т.е. отдачи
от капитальных вложений, которые предусмотрены по проекту. Как правило, в
расчетах принимается во внимание временной аспект стоимости денег.
Весьма часто предприятие сталкивается с ситуацией, когда имеется ряд
альтернативных (взаимоисключающих) инвестиционных проектов. Естественно,
возникает необходимость в сравнении этих проектов и выборе наиболее
привлекательных из них по каким-либо критериям.

Содержание

Введение
1. Сущность инвестиций
1.1 Понятие инвестиции 5
1.2. Реальные инвестиции 8
1.3. Участники инвестиционных проектов 8
1.4 Объекты реальных инвестиций 9
2. Виды проектов 10
2.3. Виды инвестиционных рисков 13
2.4. Решения по инвестиционным проектам. Критерии и правила их принятия 15
2.5. Критерии принятия инвестиционных решений 17
2.6. Правила принятия инвестиционных решений 17
3. Оценка инвестиционного проекта. Методы, системы показателей. 19
3.1. Чистая приведенная стоимость.(NPV) 22
Область применения и трудности NPV-метода. 23
3.2. Индекс рентабельности инвестиций.(PI) 25
Отличия ИРИ(PI) от других методов оценки инвестиционного проекта 25
3.3. Внутренняя норма прибыли инвестиций.(IRR) 26
Область применения и трудности IRR-метода. 27
3.4. Срок окупаемости инвестиций.(PP) 30
3.5. Дисконтированный срок окупаемости (DPP) 31
3.6. Коэффициент эффективности инвестиций. (ARR) 32
3.7. Специальные методы оценки инвестиционных проектов. 33
3.8. Сравнительный анализ проектов различной продолжительности 34
Метод бесконечного цепного повтора сравниваемых проектов 35
3.9. Сравнительная характеристика критериев NPV и IRR 36
4. Учет влияния инфляции и риска 38
Имитационная модель учета риска 38
Поправка на риск ставки дисконтирования 39
Заключение 42

Работа состоит из  1 файл

методы оценки инв пр.doc

— 286.63 Кб (Скачать документ)

слагаемых в скобках).

    В каждой из двух приведенных ниже ситуаций требуется  выбрать  наиболее

предпочтительный проект (в млн руб.), если цена капитала составляет 10%:

    а) проект А: -100,  50,  70; проект В: -100,  30,  40,  60;

    б) проект С: -100,  50,  72; проект В: -100,  30,  40,  60.

    Если  рассчитать  NPV  для  проектов  А,  В  и  С,  то   они   составят

соответственно:   3,30   млн   руб.,   5,4   млн   руб.,   4,96   млн   руб.

Непосредственному сравнению эти  данные  не  поддаются,  поэтому  необходимо

рассчитать NPV приведенных  потоков.  В  обоих  вариантах  наименьшее  общее

кратное равно 6. В течение этого периода проекты А и С могут быть  повторены

трижды, а проект В - дважды.

    В случае трехкратного повторения проекта А суммарный NPV равен 8,28 млн

руб.:

    NPV = 3,30 + 3,30 / (1+0,1)2+3,30 / (1+0,1)4 =  3,30  +  2,73  +2,25  =

8,28,

    где 3,30 - приведенный доход 1-ой реализации проекта А;

    2,73 - приведенный доход 2-ой реализации проекта А;

    2,25 - приведенный доход 3-ей реализации проекта А.

    Поскольку суммарный NPV в случае двукратной реализации проекта В больше

(9,46 млн руб.), проект В является предпочтительным.

    Если  сделать  аналогичные  расчеты  для  варианта  (б),  получим,  что

суммарный NPV в случае трехкратного повторения проекта С составит 12,45  млн

руб. (4,96 + 4,10 + 3,39). Таким образом, в этом  варианте  предпочтительным

является проект С. 

    Метод бесконечного цепного повтора сравниваемых проектов

    Рассмотренную выше методику можно  упростить  в  вычислительном  плане.

Так, если анализируется несколько  проектов,  существенно  различающихся  по

продолжительности реализации, расчеты могут  быть  достаточно  сложными.  Их

можно упростить, если предположить, что  каждый  из  анализируемых  проектов

может быть реализован неограниченное число раз.  В  этом  случае  n((  число

слагаемых в формуле расчета NPV(i, n) будет стремиться  к  бесконечности,  а

значение NPV(i, () может быть найдено по формуле  для  бесконечно  убывающей

геометрической прогрессии:

    [pic]

    Из двух сравниваемых проектов проект, имеющий большее  значение  NPV(i,

(), является предпочтительным.

    Так, для рассмотренного выше примера:

    вариант а):

    проект А: i = 2, поэтому

    NPV(2, () = 3,3 (1+0,1)2/((1+0,1)2-1) = 3,3(5,76 = 19,01 млн руб.;

    проект В: i = 3, поэтому

    NPV(3, () = 5,4 (1+0,1)3/((1+0,1)3-1) = 5,4(4,02=21,71 млн руб.;

    вариант б):

    проект В: NPV(3, () = 21,71 млн руб.,

    проект С: NPV(2, () = 28,57 млн руб.

    Таким  образом,  получены  те  же  самые  результаты:  в  варианте   а)

предпочтительнее проект В; в варианте б) предпочтительнее проект С.

            2.9. Сравнительная характеристика критериев NPV и IRR 

    Как показали результаты многочисленных обследований  практики  принятия

решений в области  инвестиционной  политики  в  условиях  рынка,  в  анализе

эффективности инвестиционных проектов наиболее  часто  применяются  критерии

NPV и IRR. Однако возможны ситуации, когда эти  критерии  противоречат  друг

другу, например, при оценке альтернативных проектов.

    1. В сравнительном анализе альтернативных проектов критерий  IRR  можно

       использовать с известными оговорками. Так,  если  значение  IRR  для

       проекта А больше, чем для проекта В,  то  проект  А  в  определенном

       смысле может рассматриваться как более  предпочтительный,  поскольку

       допускает бoльшую гибкость в варьировании источниками финансирования

       инвестиций, цена которых может существенно различаться. Однако такое

       преимущество  носит   весьма   условный   характер.   IRR   является

       относительным  показателем,  и  на  его  основе  невозможно  сделать

       правильные выводы об альтернативных проектах с позиции их возможного

       вклада в увеличение капитала предприятия. Этот  недостаток  особенно

       четко проявляется, если проекты существенно различаются по  величине

       денежных потоков.

   15.  Основной  недостаток  критерия  NPV  в  том,  что  это   абсолютный

       показатель, а потому он не   дает  представления  о  так  называемом

       "резерве безопасности  проекта".  Имеется  в  виду  следующее:  если

       допущены ошибки в прогнозах   денежного потока  (что  совершенно  не

       исключено особенно в отношении последних лет реализации проекта) или

       коэффициента дисконтирования, насколько велика опасность  того,  что

       проект,  который  ранее  рассматривался  как  прибыльный,   окажется

       убыточным? 

       Информацию о резерве безопасности проекта дают критерии  IRR  и  РI.

       Так, при прочих равных условиях, чем больше IRR по сравнению с ценой

       авансированного  капитала,  тем  больше  резерв  безопасности.   Что

       касается критерия РI, то правило здесь таково: чем  больше  значение

       РI  превосходит  единицу,  тем  больше  резерв  безопасности.  Иными

       словами, с позиции риска можно сравнивать два проекта  по  критериям

       IRR и РI, но нельзя - по  критерию  NPV.  Высокое  значение  NPV  не

       должно   служить   решающим   аргументом   при   принятии    решений

       инвестиционного характера, поскольку,  во-первых,  оно  определяется

       масштабом проекта и, во-вторых, может быть  сопряжено  с  достаточно

       высоким риском. Напротив, высокое значение  IRR  во  многих  случаях

       указывает на наличие определенного резерва безопасности в  отношении

       данного проекта.

   16. Поскольку зависимость NPV от  ставки  дисконтирования  r  нелинейна,

       значение NPV может существенно зависеть от r,  причем  степень  этой

       зависимости различна и определяется  динамикой  элементов  денежного

       потока.

   17. Для проектов классического характера критерий  IRR  показывает  лишь

       максимальный уровень затрат  по  проекту.  В  частности,  если  цена

       инвестиций в оба альтернативных проекта меньше, чем значения IRR для

       них,  выбор  может  быть  сделан  лишь  с   помощью   дополнительных

       критериев. Более того, критерий IRR не позволяет различать ситуации,

       когда цена капитала меняется.

   18. Одним из существенных недостатков критерия IRR является  то,  что  в

       отличие от критерия NPV он не обладает свойством аддитивности,  т.е.

       для  двух  инвестиционных  проектов  А  и  В,  которые  могут   быть

       осуществлены одновременно:

    NPV (A+B) = NPV (A) + NPV (B),

    но IRR (A + В) ( IRR (A) + IRR(B).

   19. В принципе не исключена ситуация,  когда  критерий  IRR   не  с  чем

       сравнивать.  Например,  нет   основания   использовать   в   анализе

       постоянную цену капитала. Если источник финансирования -  банковская

       ссуда с фиксированной процентной ставкой, цена капитала не меняется,

       однако чаще всего  проект  финансируется  из  различных  источников,

       поэтому  для  оценки  используется  средневзвешенная  цена  капитала

       фирмы,  значение  которой  может  варьировать   в   зависимости,   в

       частности, от общеэкономической ситуации, текущих прибылей и т.п.

   20.  Критерий  IRR  совершенно  непригоден  для   анализа   неординарных

       инвестиционных потоков (название условное). В этом случае  возникает

       как множественность значений IRR, так и неочевидность  экономической

       интерпретации возникающих соотношений между показателем IRR и  ценой

       капитала. Возможны также ситуации, когда положительного значения IRR

       попросту не существует.

                      3. Учет влияния инфляции и риска 

    При  оценке  эффективности  капитальных  вложений  следует  обязательно

учитывать влияние инфляции. Это достигается  путем  корректировки  элементов

денежного потока или коэффициента дисконтирования на индекс инфляции (i).

    Наиболее совершенной является методика, предусматривающая корректировку

всех факторов (в частности, объема выручки и переменных расходов),  влияющих

на денежные  потоки  проектов.  При  этом  используются  различные  индексы,

поскольку динамика цен на продукцию  предприятия  и  потребляемое  им  сырье

может существенно отличаться от динамики  инфляции.  Рассчитанные  с  учетом

инфляции денежные потоки анализируются с помощью критерия NPV.

    Методика корректировки на индекс инфляции коэффициента  дисконтирования

является более простой. Рассмотрим пример. 

3.

    Доходность проекта составляет 10% годовых. Это означает, что 1 млн руб.

в начале года и 1,1  млн  руб.  в  конце  года  имеют  одинаковую  ценность.

Предположим, что имеет место инфляция в размере  5%  в  год.  Следовательно,

чтобы обеспечить прирост капитала в 10%  и  предотвратить  его  обесценение,

доходность проекта должна составлять: 1,10(1,05 = 1,155% годовых.

    Можно  написать  общую   формулу,   связывающую   обычный   коэффициент

дисконтирования   (r),   применяемый   в   условиях   инфляции   номинальный

коэффициент дисконтирования (р) и индекс инфляции (i): 1 + p= (1 + r)  (1  +

i). 

4.

    Инвестиционный  проект   имеет   следующие   характеристики:   величина

инвестиций - 5 млн руб.; период реализации  проекта  -  3  года;  доходы  по

годам (в тыс. руб.) - 2000, 2000, 2500; текущий коэффициент  дисконтирования

(без  учета  инфляции)  -  9,5%;  среднегодовой  индекс   инфляции   -   5%.

Целесообразно ли  принять проект?

    Если оценку делать  без  учета  влияния  инфляции,  то  проект  следует

принять, поскольку NPV = +399 тыс. руб.  Однако  если  сделать  поправку  на

индекс  инфляции,  т.е.  использовать  в  расчетах  номинальный  коэффициент

дисконтирования (p=15%, 1,095(1,05=1,15), то  вывод  будет  противоположным,

поскольку в этом случае NPV = -105 тыс. руб.

    Как уже отмечалось, основными характеристиками инвестиционного  проекта

являются элементы денежного потока и  коэффициент  дисконтирования,  поэтому

учет риска осуществляется поправкой одного из этих параметров. 

    Имитационная модель учета риска

Информация о работе Методы оценки инвестиционных проектов